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The study of Heisenberg magnets with complex structure is important for the un-
derstanding of magnetic properties of real substances [1]. In this letter we shall
present some results of the mean-field analysis based on the model of two bilinearly
coupled classical Heisenberg subsystems. The proper identification of the possible
magnetic phases, their domain of existence and stability can be described by this
fully isotropic model for a big class of magnetic materials, in which the different
types of anisotropies are several orders smaller than the exchange interaction. The
importance of purely exchange models for the description of phases and phase tran-
sitions in magnetic substances is well elucidated, for example, in (2], [3].

Our analysis is done with the help of the following microscopic hamiltonian:
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The variables S¢ are n-component classical spin vectors which obey the condition
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=1; (@ = 1,2). The dimensionless parameters,
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where T is the temperature, stand for the in-subsystems and intersubsystem ex-
change interactions, respectively. In the general case they are elements of (N x N)
matrix with N - the number of lattice sites in the subsystems.
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The Ginzburg-Landau functional for the hamiltonian (1) is obtained in our previ-
ous paper (4] with the help of the Hubbard-Stratonovich transformation (HST).
Somewhat different way of application of HST to the model (1) can be found in the
book [5], where a RG analysis of the same model is done.

In the mean field calculations we neglect the spatial dependence of the order param-
eters and obtain the Landau free energy density in the form,
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The n-component real-space vectors ¢;, (¢ = 1,2), play the role of order param-
eters of the system. We shall consider only a positive in-subsystem exchange and
the weak-coupling limit which means that the interaction between the subsystems
is smaller than the in-subsystem interactions. As far as we do not take into account
any magnetic anisotropies, we shall limit our considerations to magnetic substances
with a cubic crystal structure as the bce lattice with two different magnetic ions
per unit cell. Under these conditions, the model (1) will describe two interpenetrat-
ing ferromagnetically ordered sublattices which interact either ferromagnetically or
antiferromagnetically.



For a ferromagnetic in-subsystem exchange the coefficients in Eq. (3) will be ex-
pressed by the quantities Sp(k), S1(k) and Ay 2(k) for k = 0, where Sp(k) and S;(k),
are the elements of the unitary matrix, S, which diagonalizes the Ginzburg-Landau
functional in k—space and A; (k) are the respective eigenvalues. The matrix el-
ements and eigenvalues are functions of the averaged over the nearest neighbours
microscopic exchange parameters (2) denoted by Ji, J;, K, respectively (for de-
tails, see [4]). The Landau free energy depends on the number of order parameter
components n through the parameter u = 1/n?(n + 2) which enters linearly in all
coeflicients in front of the fourth order terms. The coefficients in front of the second -
order terms 7 are also functions of n; 112 =1 — A1 2/n.

The initial hamiltonian, Eq. (1), is degenerate with respect to the rotations of all
spins by one and the same angle and this degeneracy is preserved in the Landau free
energy density, Eq. (3). That is why from the mean-field equations:
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we can find for n > 1, only the magnitudes of the vector order parameters ¢;, (i =
1,2) and their mutual orientation. Our previous analysis shows that concerning the
mutual orientation of vector order parameters, there are two possibilities, namely:

cos (p1,42) = =1 — collinear phases

cos (¢1,2) # =£1 — noncollinear phases.

In the collinear case the system of equations for the magnitudes of vector order pa-
rameters ¢;, (¢ = 1,2) can be solved only numerically and the results are described
in details in [4].

The respective equations for the noncollinear phase can be treated analytically.
Because of the degeneracy of Landau free energy density in a purely exchange ap-
proximation for n > 1, it is more appropriate to present ¢, and ¢, by the direction
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cosines +y; and o; and their magnitudes ¢, = (Z 90%1) y P2 = (Z w%,) , in
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the following way,
$1i = P1%i, P2 = P20 . (4)

Then the Landau free energy density, Eq. (3) is rewritten with the help of Eq. (4)
and afterwards minimized with respect to o; v;, @1 and , under the conditions
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The resulting mean field equation for cos (¢;, 5) = 3 a;y; will be,
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It is obvious from the above expression that the cosine between the vector order
parameters is well defined for ¢; # 0 and 3 # 0. The vector order parameters will
be mutually perpendicular when w; = 0, wy = 0. This is possible for equivalent
sublattices because w; 5 ~ (J; — Jz), but in this case the system of equations for ¢,
and ¢, has a solution only when K = 0, which means fully decoupled sublattices.

When J; # J; the system of equations for ¢;, ¢ is simple and can be solved
directly,
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To understand the properties of the obtained magnetic phase we need the connection
between the order parameter vectors ;, (i = 1,2), and the sublattice magnetiza-
tions, m;, (i =1,2)
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From the above expression we can find the magnitudes of the sublattice magnetiza-
tions and the angle v between them. The requirements

n
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restrict the values of parameters Jj, J; and K, for which the noncolliner phase can
exist.

The analytical expressions for magnitudes of the sublattice magnetizations and cos y
can be obtained straightforwardly after some algebra but they are very cumbersome,
moreover, the temperature dependence of m;, ms and cosy cannot be comprehended
directly from formulae. For this reason we prefer to give a graphical presentation
of our results. In order to compare the properties of the noncollinear and collinear
phases, obtained previously, we shall rewrite the solutions for the noncollinear phase
with the help of the dimensionless parameters, introduced in [4]:
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The quantity z is called the reduced temperature; o can be considered as a measure

of the difference between the two sublattices. We assume that, J; > Jz, because the
sublattices are symmetric with respect to the interchange 1 < 2; then, 0 < o < 1.
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The dimensionless intersublattice interaction, |3| < 1, which is a requirement of the
weak-coupling limit
T Tz — K> 0.

In Fig. 1 the variation of cosy with the reduced temperature z is depicted for a
fixed value of o and three different values of 3. The behaviour of cos is essentially
different for different values of the relation o/3. When o > (3, the noncollinear
phase is metastable in the whole domain of its existence and cos(y) < 1, including
the phase transition point. In the opposite case, i.e, & < 3, the noncolliner phase
becomes the most stable phase in the temperature interval z, < z < z*, where z*
is the transition temperature of the noncollinear phase and z, is the temperature,
below which the noncollinear phase does not exist. For 8 = 0.003, the angle between
the sublattice magnetizations vary from zero at z* to ~ 68° at x,,. When 3 grows
(see the curve for # = 0.005) the domain of the existence for the noncollinear
ferrimagnetic phase becomes more narrow and for 3 ~ 0.0056 it does not exist.

The calculations show that in the region of stability of the noncollinear phase the
magnetization M = m; + m, is perpendicular to the staggered magnetization
L = m,; —m,. This is the condition for the existence and stability of a noncollinear
ferrimagnetic phase, derived on the basis of a symmetry group analysis by Andreev
and Marchenko [6].
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Figure 1: The temperature dependence of cosy for n = 3, & = 0.001 and different
values of the parameter 3

In Fig. 2 and Fig. 3 we compare the Landau free energy density as a function of
the reduced temperature z for all magnetic phases we have found (collinear and
noncollinear). The phase with the highest transition temperature, denoted by S
in Figs. 2, 3, has a collinear ferrimagnetic structure with a compensation point at
lower temperatures. It is stable and occurs through a second order phase transition.
The symbols for the high- and low-temperature metastable collinear phases are
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M;, i = 1,2, respectively. Mj is a collinear metastable phase, which occurs by a
second order phase transition, not given in [4]. The Landau energy density of the
noncollinear phase is denoted by New.
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Figure 2: The temperature dependence of Landau free energy density for a >

For o > [ the noncollinear phase has an energy slightly higher than the stable
collinear phase - Fig. 2. When the difference between the interaction in the sub-
lattices becomes smaller than the intersublattice interaction, the noncollinear phase
has lower energy than the S-phase in the whole domain of its existence - Fig. 3.

We can argue that with the decrease of the temperature the system orders by a sec-
ond order phase transition in the stable collinear ferrimagnetic phase and with the
further lowering of temperature a second phase transition occurs and a new ordered
noncollinear phase appears. At lower temperatures the noncollinear phase ceases to
exist. It is obvious from the above figures that the domain of existence and stability
of the noncollinear phase is very narrow and it can occur only for magnetic sub-
stances, in which the following relation between the averaged microscopic exchange
parameters holds true:

(h—-R)<K<vVIHT.

Up to now we have considered only the ferromagnetic exchange between the sublat-
tices (B > 0). As the calculations show the respective noncollinear phase for 3 < 0,
i.e., for an antiferromagnetic coupling, exhibits a similar temperature behaviour as
the ferrimagnetic noncollinear phase described above.

We did not study the noncollinear phase in the general case of n-component order
parameters. The above calculations are made for n = 3 which is the most interesting
case up to our opinion. The analysis shows that for n = 2 the domain of existence
of the noncollinear phase is very tiny and we did not find values of the parameters
a and £, for which it can be stable.
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Figure 3: The temperature dependence of Landau free energy density for o < 8

The difference between the energies of the stable collinear ferrimagnetic and the
noncollinear ferrimagnetic phases is very small. In the real magnetic substances
even a small anisotropic interaction may change the above described picture, but
this problem needs a separate investigation.
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CylecTBOBAHME YCTOHYMBOH HEKOJUIHHEAPHOH (ha3bl
B Mozenu [eiiseH6epra cIOXHOH CTPYKTYPBI

AHaTM3MPYIOTCS CBOHCTBAa HEKOJUIMHEAPHON MarHWTHOH ¢a3bl, NMOMYIEHHOM
B NPUOIMXEHHH CPENHEro Nojis IS ABYX CBA3AHHBIX MOACHCTEM TeitzenGepra.
OG6acTh CylECTBOBAHHS H YCTOHYMBOCTH (ha3bl JOBONILHO Y3Kast M 3aBUCHT OT CO-
OTHOLIEHHS MEXIY YCPEAHEHHBIMH MO GAM3KHUM «COCENIM» MHKPOCKONHYECKHMH
OOMEHHBIMH TIapaMETPaMH.

Pa6ota Beimonuena B JlaGoparopuu uropMauMoRHBIX TexHonorui OWSIH.
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The Existence of a Stable Noncollinear Phase
in a Heisenberg Model with Complex Structure

We have analyzed the properties of a noncollinear magnetic phase obtained
in the mean-field analysis of the model of two coupled Heisenberg subsystems.
The domain of its existence and stability is narrow and depends on the ratio
between the microscopic exchange parameters averaged over the nearest neigh-
bours.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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