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1. INTRODUCTION

Quantum observable A must satisfy the equation
(¥, 48) = (AT, 3). 1

Note that this Hermiticity property (HP) is necessary but not sufficient for A to
be an observable possessing a complete set of eigenvectors with real eigenvalues,
see Richtmyer (1978). Eq. (1) must hold for vectors ¥, ® belonging to Hilbert
space H (more exactly belonging to A domain (Richtmyer, 1978)). In fact
Eq. (1) is also valid when ¥, ® are A eigenvectors which may not belong to
H. In practice physicists use Eq. (1) for any ¥ and ¢ they come across. For
example, let us mention the derivations of spectral representations (Schweber,
1961) and sum rules (Lipkin, 1973). In other words, Eq. (1) is assumed (usually
tacitly) to be a working tool which allows one to perform calculations.

Therefore, it seems urgent to give examples of ¥ and ® for which Eq. (1)
turns out to be invalid. This is done in Section 2.

In Section 3, the known Schwinger paradox is considered in detail in order
to show that its derivation assumes the validity of a particular HP. This makes
it possible to suggest the resolution of the paradox: this assumption must be
rejecte'd.

The so-called Schwinger term amd sum rules are dicussed in Sections 4 and

For conclusion see Section 6.

2. COMMUTATION RELATIONS VERSUS
HERMITICITY

Let us show that for some ¥ and & Eq. (1) turns out to be invalid.



Along with A consider an operator B such that [A,B] = C # 0 (note
that A is multiple of the unit operator if [4, B] = 0 for all B). Let ¢, be A
eigenvectors

Ap, = ap,, a are real. (2)

Consider the averages of [A, B] — C in the state ¢,. We have

(‘Pa, AB(Pa) (‘Pm BA(Pa) + Coa

(a(pm B(Pa) + Caa = (A(pa, B‘pa) + C'aa~ (3)

Eq. (2) was used; C,, denotes (p,, Cp,). The consequence of Eq. (3) is that
Eq. (1) is invalid for ¥ = ¢,, ® = By, when Cy, # 0 and must be replaced by

(<Pa, A(D) - <A<Pa7 (I>> = Caaa ¢ = B‘)Oa- (4)

Conversely, if Eq. (1) is postulated to be valid unconditionally, then (p,, [4, B]@a)
must vanish in contradiction to [4, B] # 0 (C,, being nonzero). Assuming that
both Eq. (1) and commutation relations (CR) are valid we get paradoxes which
mean that Eq. (1) and CR are inconsistent.

Example. Let A be a momentum operator P = —id/dz and B be a function
g(z) of the position operator z, so that [P, g(z)] = —ig’(z). Then Eq. (3) turns

into

(o, Pgop) — (Pp, gp) = (i, (—1)g'0p)
(=1)[g(c0) — g(—00)]. (5)

Here ¢, = exp(ipz). The r.h.s. of Eq. (5) does not depend on p, is not zero
and is finite if e.g. g(z) = tanhz. So Eq. (1) in the case A = P, ¥ = ¢, and
® = gy, is not consistent with [P, z] = —i.

It will be shown in the next section that analogous inconsistency of HP

and CR explains (resolves) Schwinger’s paradox.



3. SCHWINGER’S PARADOX

Let us consider a spinor field % which is free or interacts with other fields.
Usual canonical CR are assumed for Schrédinger operators %, (%) and ¥; (&)

(see, e.g., Bjorken, Drell (1965))

{wu(f)’ w:(g’)}+ = 5Mu6(f ~ ). (6)

Here u,v = 1,2,3,4; ¢} denotes Hermitian conjugated to ,. Zero anticom-
mutators are not written out.
3.1. Let us calculate the double commutator [j°(Z), [H, j°(7)]] where H is

the total Hamiltonian and
@) =) (@)@ = v (@)v(@)
m

(the column of 1, is denoted by v and the row of ¥ by 91). Zero commutators

follow From Eq. (6) for Dirac charge and current densities

[1°@),,° @] =0 (7)

[°@),/* @] =0, @) =¥ (@) (). (@)
Suppose that the interaction terms in H depend only on bilinear combinations
of the spinor fields, namely such as j°, %, ¥ By, %! Bys1 (without derivatives
of ¢). Then it follows from Eq. (6) (in particular from Egs. (7), (8)) that
[7°(Z), H] is equal to [j°(Z), Hos), Hos being the free spinor Hamiltonian

Hys = / P2yt (&) (—ia* Vi + fm)p(F) (9)
see Bjorken, Drell (1965), Ch. 13, Eq. (13.46). Using Eq. (6) one gets
[1°@), H = —i ) Vii*(@). (10)
k

Eq. (10) also follows from 8,5 + divj = 0 and [j°, H] = i8,j°. Due to Eq. (8)

the double commutator [j°(Z), [H, 7°(7)]] equals zero. In particular, we have

[F,[H, F]] =0, F=/d3xf(f)j°(a'c‘). (11)
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Stating the Schwinger paradox Itzykson and Zuber (1980), Vol. 2, Ch. 11.3,
assumed f(Z) = 0(%) so that F = j°(0).
In particular Eq. (11) leads to

D =(Q,[F, [H7 FljQ) =0, (12)

where Q is the physical vacuum state. Let us assume that HQ = 0.
3.2. Schwinger (1959) calculated D in a different way which results in a
nonzero value for D in paradoxical contradiction to Eq. (12). The way begins

as follows:
D = (Q,[F,[H F|IQ =(Q,(FHF — FFH — HFF + FHF)Q)
= —{(Q, HFzﬂ) —2(Q, FHFQ). (13)

Only the equation HS2 = 0 has been used. The positiveness of the second term
in the r.h.s. of Eq. (13) will be argued in the next subsection. Schwinger (1959)
as well as Itzykson and Zuber (1980), Vol. 2, Ch. 11.3, tacitly assumed that
the first term in the r.h.s. of Eq. (13) vanishes because of Eq. (1) and HQ = 0.
So in this way one obtains D > 0 instead of D = 0.

To resolve the paradox the Egs. (7), (8) are usually stated to be false (the
term “naive” is used). I suggest another resolution. Eq. (6) is postulated, so
Egs. (7), (8) are valid and the r.h.s. of Eq. (13) must vanish. This means that
(Q, HF?Q) must be equal to 2(Q, FHFQ) > 0 (and not to zero). In other
words, the paradox shows that Eq. (1) is false for A = H, ¥ = Q, & = F?Q.

3.3. Now turn to the derivation of the inequality (Q, FHFQ) > 0. This
needs some assumptions. At first, the validity of the spectral resolution H =
> n I7) En(n| is assumed, |n) being H eigenvectors, E, > 0. Further Eq. (1) in
the form

(Q, Fn) = (FQ,n) = (n, FQ)* (14)
is used. The result is strictly positive

(Q, FHFQ) =Y E,|(n|F|Q)[? (15)

if (n, FQ) # 0 for some |n) # Q.
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In the case of the free spinor field one may prove the inequality (2, FHFQ) >
0 using canonical anticommutators for fermion creation-destruction operators
(the anticommutators being tantamount to (6)). One obtains that (Q, FFHFQ)

diverges, i.e., in this case the paradox assumes the extreme form “0 equals 0co”.

4. REGULARIZATION AND SCHWINGER
TERMS

In order to regularize (2, F HFQ) Schwinger (1959) proposed to replace j°(Z) =
YH(@)Y(Z) by

37 (&) = 9N — E)Y(T + &)
(the subsequent symmetrical averaging over all £ directions being implied). It

follows from Eq. (6) that the commutators [j2(%), j2(%)] and [j2(Z), j¥(7)] are
nonzero and, therefore, [F, [H, F;]] # 0. Schwinger did not verify the equality

(, [F,, [H, F,]|Q) = 2(Q, F,HF,Q).

Meanwhile if the equality does not hold, the paradox still exists though it
does not have a simple form “zero equals nonzero”. Schwinger’s purpose was
to demonstrate that (£, [j°(Z), j%(#)]2) contains a nonvanishing contribution
proportional to V§(Z—%). It is called Schwinger’s term and has been discussed
in Itzykson, Zuber (1980), Vol. 2, Ch. 11.3 and Weinberg (2000). Weinberg
noted that dimensional regularization does not lead to the Schwinger term.
Then Schwinger’s paradox survives under regularization.

Let us mention a modification of Schwinger’s paradox. There exists a way
of calculating the average (2, [°(Z), 7*(7)]2) which gives to it a nonzero value
(proportional to Vi8(Z — %)) in contradiction to Eq: (8). See, e.g., Brown
(1966), App. A, Itzykson, Zuber (1980), Vol. 1, Ch. 5.1.7 (in the latter reference



see Eq. (5.98) which follows from Egs. (5.91) and (5.89), or from Eq. (5.81)).
The modification looks simpler than Schwinger’s version. However, its deriva-
tion uses among others the assumptions of the kind represented by Eq. (14)

needed to obtain absolute squares of matrix elements, cf. Eq. (15).

5. “SUM RULES” AND SCHWINGER PARA-
DOX

To illustrate the relation between “sum rules” and Schwinger’s paradox I con-
sider a simple case of nonrelativistic quantum mechanics when the Hamiltonian
is equal to p?/2m+V (). Similarly to Section 3 an average of the double com-
mutator [F, [H, F]] is calculated in two ways, F' being now some function of z.

The first way uses only the canonical CR [p,z] = —i¢ and gives
(@, [F, [H, F]IQ) = (Q, (F'(z))’Q)/m.

The second way is carried out analogously to Subsection 3.2 and assumes the

validity of Eq. (1) in the form
(Q, HF?Q) = (HQ, F*Q) . (16)

Here and below (2 denotes H eigenvector with eigenvalue Ey.
“Sum rules” are obtained when we equate the results of these ways of

calculation, e.g., see Lipkin (1973),
1 (dF)? ' \
0.5 (%) 9 =2 ZE - miiror ")

For possible physical applications of “sum rules” see Lipkin (1973). However,
it should be stressed that their theoretical validity depends on the validity of
Eq. (16). We may use “sum rules” for verification of Eq. (16). For this purpose

one must calculate directly the sum in the r.h.s. of Eq. (17) and compare the
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r.h.s. with the Lh.s. Their inequality will mean that we have a paradox which
shows that Eq. (16) is inconsistent with [p, z] = —i. Schwinger’s paradox may

be considered as an example of “sum rules” which is obviously violated.

6. CONCLUSION

It was shown that the Hermiticity property (HP), see Eq. (1), for some A, ¥,
® may turn out to be inconsistent with commutation relations (CR).

The usual way of the Schwinger péradox resolution is to doubt canonical
CR, HP being tacitly assumed. I suggest another resolution: CR must be
considered as fundamental fixed postulates which are necessary for quantum
calculations. To resolve the paradox, one must accept that HP is invalid for
some A, ¥, &.

It was stressed in in Section 5 that “sum rules” derivation uses HP as in the
case of Schwinger’s paradox. Therefore, the rules may be invalid as theoretical
statements. Their derivation should be complemented by the proof of the

corresponding HP.
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DpPMHTOBOCTh KBAHTOBBIX HabIIONaeMbIX
H TIEPECTAHOBOYHbBIE COOTHOLICHHS

JUnst IONydeHHs MPABU CYMM M CIIEKTPAIBHBIX MPEACTABIEHHH HCTIONb3YETCH
CBOJHCTBO PMHTOBOCTH HabmonaeMbix (¥, A® }=(A¥,®). loxasaHo, 4To WA He-
KOTOpBIX ¥ M @ 3TO CBOMCTBO OKa3bIBAETCA HECOBMECTHMBIM C TIEPECTAHOBOYHBIMH
COOTHOLICHMSMH, cofepxaummu A. C NOMOLIBIO 3TOH HECOBMECTHMOCTH HAaHO
OOBACHEHHE M3BECTHOTO mapanokca lIsunrepa. ‘
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