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1 Introduction

Small-angle neutron scattering (SANS) is a very popular method used by physicists,
material scientists, chemists, and biologists. Determination of invariants for small-
angle scattering curves allows one to analyze investigated object parameters. Raw
data treatment includes preprocessing, i.e., calibration, normalization and conver-
sion from the time-of-flight scale into the momentum transfer scale Q. Since data are
registered by two different detectors, they must be combined and merged account-
ing for detector resolution. This merging is also the important part of preprocessing.
The main problems of preprocessing arise due to a high data dispersion caused by
relatively low statistics at high neutron wavelength, the presence of noise measure-
ments, and due to the resolution variability of different detectors and even parts
of them. This work is aimed to improve the quality of merged data and thereby
to increase the range of used data, reduce the theoretical model uncertainty and to
reduce measurement time consumption.
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1.1 YuMO spectrometer

We analyzed the data measured on the YuMO spectrometer (Fig.1.1) operated on
the 4-th channel of the IBR-2 fast pulsed reactor [1, 2]. The measurements were
carried out in two-detector spectrometer configuration [3], which provides a wide
range of momentum transfer @), using the time-of-flight technique.

Figure 1.1: SANS YuMO spectrometer. 1 — reflectors, 2 — active zone with moderator,
3 - breaker, 4 - changeable collimator with different beam-holes, 5 — vacuum tube,
6 — adjustable collimator determining the size and position of the direct beam, 7 -
thermostats, 8 — sample container, 9 — sample table, 10 — standard vanadium scatterer,
11, 12 - “OLD” and “NEW" detectors, 13 — direct beam detector

Data are registered by two ring-shaped detectors (11 and 12 in Fig.1.1) depending
on the wavelength under several scattering angles. One of the detectors (“OLD”) is
positioned close to and the other one (‘NEW”) far from the sample.! Both detectors
are used simultaneously during measurements. The software developed long ago to
treat YuMO spectra cannot meet all the requirements, especially for its new set-up,
cardinally upgraded recently [3].

1“NEW” and “OLD” signatures are just names of detectors.
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1.2 Spectra samples

In this work, we have used the results of neutron measurements, obtained on the
apoferritin protein sample obtained from Aldrich corporation. This sample can be
used as a standard for testing the SANS spectrometer, because the apoferritin solvent
is mono-dispersive and its spectra are very distinctive.

The existing data treatment programs SAS [4] and OpenG2 [5] both provide the
possibility to merge spectra, taking into account statistical errors. The resulting
spectra with a decimated Q-grid still remain noisy (SAS results are shown in Fig.
1.1). As one can see, both spectra are deeply overlapped, but have rather different
variability characters.
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Figure 1.1: Apoferritin spectra samples from the “NEW" (left) and the “OLD" (right)
detectors
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Figure 1.2: Q-resolution dependencies for the “NEW" (left) and the “OLD" (right) de-
tectors

There is a lot of conventional software aimed to perform smoothing. But direct
application of any of them to SANS spectra processing does not give a good result.
It is caused by the experimental spectra character: their smoothness is substantially
varied from the beginning of a spectrum to its end. Therefore, a new smoothing



approach is required. Our goal is to improve the quality of spectra produced by the
SAS program by applying new non-traditional methods.

The main idea is to take into account the spectrometer resolution, AQ, while smooth-
ing. The spectrometer resolution dependencies given by SAS program for the “NEW”
and the “OLD” detectors at the first step of data treatment are shown in Fig.1.2.

2 Traditional smoothing techniques

One usually distinguishes white noise (having similar amplitudes over a wide fre-
quency spectrum) and impulse noise which is a momentary perturbance, limited in
the frequency band, and also limited at saturation (i.e., the maximum signal height
permitted). Very often the spectrum of a noise contains higher frequencies than the
spectrum of an original signal. So, in many cases a simple low-frequency filtering
can be an effective technique for noise reduction. In principle, any filter with non-
negative coefficients can be used for smoothing. In our work, we considered the most
popular traditional filters: smoothing window and median ones [6].

2.1 Smoothing window filter

The smoothing window filter is an example of a linear filter. Linear filters are
amenable to analysis in the Fourier domain. We used a simple uniform filter - the
output signal (R) is based on a local averaging of the input values (A) having the
same weight

w—1

R; = (l/w)ZAi+j—w/2 , w/2<i<n—-1-w/2,

=0

where n is the number of elements in A, and w is the width of the sliding window.
The smoothing window filter provides an effective way of noise suppression. The
known disadvantage of this filter is a blurred resulting signal due to suppression of
high frequencies in both noise and original signal spectra.

2.2 Median filter

Median filter is a nonlinear filter applicable when the data distribution is not normal
or unknown at all. The median filter is based also on the sliding window approach,
but the data inside the window with an odd number of elements must be sorted, first,
ascendingly in order to find their median, i.e. the middle element of the sorted set.
Then this median replaces the central element of the window that slides to the next
position, etc. In contrast to smoothing window filters, the median filter keeps better
the contour of an image. The median filters are usually very effective for signals
with sharp rejections or with step appearances that are non-normally distributed.



2.3 Modification of traditional smoothings for SANS spectra
processing

We replace the constant width w for the smoothing window and median filters

with the variable width according to the spectrometer resolution. According to Q-

resolution dependencies for the “NEW” and the “OLD” detectors (Fig.1.2), w varied
from 3 to 21 for the first one and from 3 to 35 — for the second one.
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Figure 2.1: Spectra processing using an adapted smoothing window filter for the “NEW"
(left) and the "OLD" (right) detectors
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Figure 2.2: Spectra processing using an adapted median filter for the "NEW" (left) and
the “OLD" (right) detectors

Such an adaptive procedure gives more suitable results, shown in Figs. 2.1-2.2.

3 Wavelet approach

Wavelets are versatile tools of harmonic analysis. Scientists always want more appro-
priate functions than sines and cosines which comprise the basis of Fourier analysis,
to approximate signals with discontinuities. Sines and cosines are non-local and
stretch out to infinity. Therefore, they do a very poor job in approximating signals
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with sharp spikes. But with a wavelet analysis, we can use approximating functions
that are contained in finite domains. Thus, the wavelet analysis gives a simultaneous
knowledge of various signal frequencies and the time location of these frequencies as
well.

Accomplishing wavelet analysis usually means the following:

e to make a proper choice of a wavelet type;
o to fulfill @ wavelet filtering for denoising, removing pedestals, and extracting
some features of analyzed data. It is carried out by

1. transforming data to a wavelet domain;
2. applying desirable cuts on wavelet 2D-spectrum;
3. making an inverse transform.

3.1 Continuous wavelet transform

The wavelet transform of function f(x) € L?(R) is its projection to the basic wavelet
dilated by factor a and shifted by b

—b
(@8] = / o (22 s @
\/_
The reconstruction, or inverse wavelet transform, is
da db
0=z [ [+(33°) a2 @)

where Cy is the normalization constant for a given basic wavelet .

As a first example of how the wavelets work, let us take a harmonic signal constructed
by superposing the low-frequency one with a small fraction of the high-frequency one
and then contaminating it by uniformly distributed random noise, see Fig.3.1 (left).

Figure 3.1: A sample of a signal comprising two harmonic components contaminated
by noise (left) and its wavelet spectrum (right, horizontal axis corresponds to the time
parameter b, vertical one — to the scale parameter a)



Fig.3.1 (right) presents the wavelet spectrum. The shade-plot provides a powerful
tool, which helps to display the structure of the signal. The set of wavelet coefficients
can be presented as a projection of the 3-dimensional surface W = W (a, b) onto the
a-b plane. Coefficients with higher values are shown in light colors, and the lower
ones in dark colors.

The next figure shows the results of the final filtering of the same signal.

Figure 3.2: Extracting data from the signal of Fig.3.1: low frequency component
(left) and high frequency component (right)

It can be seen that the filter allows one to extract both components of the original
signal. Thus, selecting properly the scales of the wavelet transformation, it is possible
to highlight the components of the desired scales.

3.2 Adoptive modification of CWT for SANS spectra process-
ing
Any SANS spectrum is just a histogram
Nbins

Z hké(]) - .'L‘)c (3)

bms k=1

f(z) =

For a discretized signal like (3) CWT (1) is written as

Nbins

Wy(a,b)[f] = Z\/— kw( b), (4)

nskl

and it looks like the Parsen—Rozenblatt estimates of the unknown probability density
over a sample (see [7]). Equation (4) is nothing but the “averaged sum” of the
wavelets 9 [(zx — b)/a] compressed to the size a and “placed” at points z.

Let us take a Gaussian

g9(z) = —\/15—; exp (—%2)

o |



instead of a true basic wavelet 1 in (4). Then we have

1 Nbins Ry (zx — b)z
Wg(a7 b)[f] - m ; \/2—7ra €Xp <_ 2a2 )

and no inverse transform is needed.

The direct application of the last formula to SANS spectra processing does not give a
good result yet, because their smoothness is substantially varied from the beginning
of the spectrum to its end. We choose a dilation factor (RMS of Gaussian) depending
on a point, according to a given Q-resolution of YuMO spectrometer at this point
(see Fig.1.2). Thus, we have constructed a new kernel transform with the adaptable
gaussian halfwidth

Npins 2
0= Y ot (<220 )

~ Nyins — V2ma(zy)  202(my)

Finally, let us write (5) in a notation suitable for SANS:

s 1 e _(Qk—Qn)2)
= N ; V2rAQs e""( 2@ ) -

This transform appears to be good for the SANS spectra smoothing. Results of it
application are showh in Fig.3.3.
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Figure 3.3: Spectra processing for the "NEW" (left) and the “OLD" (right) detectors

3.3 Discrete wavelet transform: lifting scheme

The idea of a discrete wavelet transform is to represent given data as a decomposition
using basis functions v, = 279/2(27t — k) and ¢, = 279/2¢(279t — k). They are
constructed as scaled and shifted two basic functions:

e a scaling function ¢;



e a wavelet function (or “mother wavelet”) 1.

Both of these functions should have a locality in time/space and frequency domains.
The purpose is to get the following decomposition of a source data

Bl
ZSLk¢L/c z)+ D> digthin(zi)

j=1 k=1

where NN is a number of samples in the data sequence, and L is a decomposition
level. As the result, we can describe our signal in terms of coefficients sz and d;y,
where s are called approximation coefficients and d; are details at the j-th level
of the decomposition. The way how to get this representation of the signal is shown
in Fig.3.4.
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Figure 3.4: Wavelet decomposition scheme

Lifting scheme is a fundamentally other approach to building wavelet decomposi-
tions, proposed by W.Sweldens [8, 9]. Constructing wavelets using lifting consists of
three phases.

1. Lazy wavelet splits the data {\gx} into two subsets, even and odd
Atk =Xo2k, kK€EZ, (6)
and wavelet coefficients
V-1 = Ao2k+1, K€EZ.

2. The second step calculates the wavelet coefficients (high pass) as the failure to
predict the odd set based on the even

V-1k= V-1 = P(A_1) - (7)
A simple example of (7) is
Y1k = V16 — (A1 + Ao1-1)/2,
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i.e., P is a function piecewise linear over intervals of length 2, and wavelet
coefficients measure to which extent the original signal fails to be linear. In
terms of the frequency content, the wavelet coefficients capture high frequencies
in the original signals.

3. The third step updates the even set using the wavelet coefficients (low pass).
The idea is to find a better A_;, so that a certain scalar quantity Q(), i.e.
mean, is preserved, or Q(A-1x) = @(Xox). We construct operator U and
update {A_1x} as

Acre = Acie +U(y-14) - (8)

In a simple case, for a long signal, we can update the A coefficients with the
following equation:

Ark = Aoip + (Y-1k + V-14-1)/4 .

The three stages of lifting described by (6), (7), and (8) are combined and iterated
to generate a fast lifted wavelet transform algorithm

Nk viky = Split(Njak)
Yik — = P(AJ,/C) )
Nig += Ulvjx) -

Inverse transform

)\j,lc - = U(’Yj,k) ’
Yik += Pk,
Nigrg = Join(Ajk, Vi) -

3.4 Application of DWT to SANS spectra processing

The filtering using lifting is carried out, as usual, in three steps:

1. calculate the set of wavelet coefficients;

2. cut off the spectrum (e.g., set to zero all coefficients which values are less then
the prescribed threshold);

3. perform the inverse wavelet transform of the obtained spectrum.

The processing was produced by using a LIFTPACK [10] based program [11].
The absence of a structure in the removed component confirms the validity of this
processing.
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Figure 3.5: Spectra processing for the “NEW" (left) and the “OLD" (right) detectors
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Figure 3.6: Components, removed from the spectra for the “NEW" (left) and the “OLD"
(right) detectors

4 Influence of smootings on the next processing stage

Determination of invariants for small-angle scattering curves allows one to analyze
the structure of an object under study. Upon the first step of this analysis the
shape of the object (which is the apoferritin complex) is approximated by simple
geometrical bodies — spheres, ellipsoids, cylinders or prisms [12].

After filtering the resulting curves were fitted by a spherical shell model, which is
one of the most adequate for apoferritin

4 4 2
A EWR?CI’(qu) - gﬂRg@(qu) +B,

~
—~
)
=

Il

sint —tcost
d(t) = 3—t3————,

where R; and R, are inner and outer radiuses and A and B are the amplitude
and background parameters. As a quality criterion to compare our results, the x?2
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criterion could be used

2 _ 1 P (Itheary(Qk) - Ik)2
Nbins - Nparms k=1 AIls: ’

X

where Npgrms = 4 is a number of model parameters.
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Figure 4.1: Theoretical spectra for the "NEW” (left) and the “OLD" (right) detectors

An example of the theoretical spectra is shown in Fig.4.1, the x? values are shown
in the following table.

Detector: “NEW” “OLD”
Raw spectra  1.52 2.13
Smoothing window  0.76 1.36
Median filter 0.77 1.45
CWT 1.12 1.59
DWT 0.97 1.33

The wavelet filtering looks preferable due to obtained x? values. Moreover, the
wavelet filtering gives smoother resulting curves, including their edges, with no loss
of experimental information.

5 Conclusion

o A new kernel transform with an adaptable gaussian halfwidth is constructed.
It is a sutable tool for SANS spectra smoothing. This transform is ready-to-use
in SANS data processing:

— it is applied automatically (no manulal work is needed);
— it takes spectrometer resolution correctly into account;
— it improves the resulting scattering spectra quality.
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e The lifting scheme has a number of advantages in comparison with the clas-
sical discrete wavelets. This transform works for signals of an arbitrary size
with correct treatment of the boundaries. In addition, all computations can
be carried out in-place. Moreover, the lifting scheme makes them optimum,
sometimes increasing the speed of calculations by a factor of two.

However, to be applicable for SANS data processing, the lifting scheme filtering
needs further developments, since it requires some manual preadjusment in its
present implementation.
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Conosses A. T. u mp. E11-2002-293
CpaBHUTEIBHBIA aHATH3 METONOB CIIAXHBAHHA NPUMEHHTEILHO
K 06paGoTKe JaHHBIX MIOYIJIOBOTO PacCesHUs HEHTPOHOB

Ilpencrasien METOR yIydyLIEeHHS Ka4eCTBa CIIEKTPOB pPacCesHHs, KOTOpoe Ho-
cTuraerca Girarogaps MCIONIb30BaHMIO Pa3spEILCHHA CIEKTPOMETpa KaK IpH Beii-
BIET-(PHAbTPALIMH, TAK W NIPH TPAXHLIHOHHBIX METONAX CIIAXHUBAHHS JAHHBIX Ma-
JIOYIJIOBOTO paccedHHs HelTpoHoB. Ha cnenylomeM arane o0paboTky JAHHBIX ITOT
pe3ynbTaT PHBOMAMT K JIYJHIHM NOATOHOYHBIM KPUBbIM, 3a1aBacMbiM opmdaxTo-
poM TeopeTHueckoi MozenH. KpoMe Toro, BeHBIE€T-aHATH3 MO3BONAET BbUIEIATH
H aHAJM3HPOBaTh (DOHOBYIO COCTABNAIOMYIO (LIyM) H BBONUTH MHCTPYMEHTAIbLHbIE
HONpPaBKH, '

Pa6ota Bbinonuena B JlaGoparopuu Heiitponnoi ¢usuxku um. U. M. @panka
OWsIH.

Coobmenne OGbeAHHEHHOIO HHCTHTYTa SAEPHBIX MccienoBaHuit. Jy6xa, 2002

Soloviev A. G. et al. E11-2002-293
Comparative Study of Smoothing Techniques with Reference
to Data Treatment for Small-Angle Neutron Scattering

This work presents an improvement of the resulting scattering spectra quality
due to the use of the spectrometer resolution during both wavelet filtering and tra-
ditional smoothing of the small-angle neutron scattering data. This result leads
to a better fitting of the form factor curves at the next step of data analysis. In addi-
tion, the wavelet analysis permits one to extract and analyze a background (noisy)
component and to carry out instrumental hardware corrections.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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