E11-2002-296

E. A. Ayrjan, J. Busa, J. Dzurina, Sh. Hayryan, J. Plavka

FAST ANALYTICAL METHOD FOR COMPUTING
VOLUME OF OVERLAPPING SPHERES '



Contents

1 Introduction 1
2 The Method 2
2.1 Stereographic projection . . . . .. ... ... .. 3
2.2 / / zdzrdy computation . . . . . ... ... .. ..., 5
Bi(S)
tds —sdt .
2.3 f m computation . . ... ... ... . ... 6
B(2;)
3 Partial volume computation 10
3.1 Computation of the integral / / (z—z1—r)dzdy . ... .. 11
By(F)
4 Numerical results 12
5 Conclusion ' 13
References 13

1 Introduction

Solvent environment plays a crucial role on the structure and function of
biological macromolecules, such as DNA, RNA and proteins. Exact deter-
mination of direct interactions between the macromolecules and the solvent
molecules still remains a very hard mathematical and computational prob-
lem. By this reason a different kinds of approximations are usually done
which allow to describe these extremely complicated interactions through
physically averaged macroscopic parameters. Such an effective parameters
are, for example, solvent accessible area of the solute molecule and the so
called excluded volume. Computation of these parameters requires evalua-
tion of complicated algorithms. For this reason, any effort to development
an effective analytical methods is always welcomed.

Richmond [1] has defined the solvent-excluded volume to mean the vol-
ume contained within the solvent accessible surface, i.e. the volume which
is inaccessible to the centers of solvent particles. That is the union of the
expanded atom spheres. The excluded volume is an important quantity in
the theory of gases and liquids [2]. The exploration of molecular volume and
surface is essential for the understanding of drug action since short range



dispersion forces play a major role in the binding of drug molecules to recep-
tors (http://server.ccl.net/cca/documents/molecular-modeling).

The problem of the computation of volume of the union of overlap-
ping spheres has been the subject of methods both numerical (Rowlinson,
1963; Pavani and Ranghino, 1982; Gavezzotti, 1983) and analytic (Rich-
mond, 1984; Kang, Nemethy and Scheraga, 1987; Gibson, and Scheraga,
1987a; Gibson, and Scheraga, 1987b; Gibson, and Scheraga, 1988; Guerrero-
Ruiz, Ocadiz-Ramirez and Garduno-Juarez, 1991; Petitjean, 1994) (see
http://www.netsci.org/Science/Compchem/featureldg.html).

At http://wuw.biohedron. com/bibliography.html one can find ref-
erences to this topic. '

In this paper two exact analytical methods for the calculation of the
volume of overlapping spheres are described. This methods evolve the ap-
proach utilized by authors of [3] for surface area calculation. In the consid-
ered procedure the volume of the system of overlapping spheres is expressed
by surface integrals over closed region. Using the stereographic projection
(see [4]) of the sphere surface points onto a plane tangent to the atom and
opposite the origin located at spheres North Pole, particular surface inte-
grals are transformed to double integrals which are further reduced to the
curve integrals. A different way of using the stereographic projection for
molecular surface calculation was described in [5].

2 The Method

We describe the molecule S as a union of the spheres (atoms) Sy, ..., Sp
n

(see fig 1). Hence S = |J S;. Let (x4, ys, ;) be Cartesian coordinates of the
j=1

center of the i-th sphere and r; be the radius of this sphere, where 1 < i < n.
For j # i we say that S; is a neighbor of S; if in (S;) Nin(S;) # 0, where
in (S) denotes the interior of the set S.

The algorithm of volume computation can be briefly presented as

Volume integral => Surface integral => Double integral = Line integral

We shall compute volume V(S) by using Gauss-Ostrogradsky’s theorem
which allows to reduce the volume V(S) evaluation to the surface integrals
of the second kind

V(S) =// drdydz = //zdzdy-_-i //zda:dy, 1)
s =1 B.(s)

B(S)



Figure 1: Visualization of the molecular surface

where B(S) is the surface of S and B;(5) is as a part of surface of S; which
is outside of all its neighbors. All integrals at right side of (1) can
be calculated separately. At this point the problem of computing V (S) is
reduced to computing n surface integrals.

Next step is the transformation of the surface integral over the particular
surface B;(S) to the double integral. This can be done by transformation
of the surface B;(.S) onto the tangent (to the South Pole of S;) plane.

2.1 Stereographic projection
The points (z,y, z) of the i-th sphere’s surface satisfy the equation
(@ -z’ + (y—9)* + (2 — 2)* =1} (2)
The equations
T =x; +4r2t/(t? + 5% + 4r?)
y=uys +4ris/(t* + s* + 4r]) (3)
z:zi+r¢‘~8rf’/(t2+s2+4r;*))

describe a projection of the points of the i-th sphere’s surface from its North



Pole point (NP) onto the plane (t,s) € R?, tangent to the sphere at the
South Pole. This is a one-to-one map except the point (z;,y;, z; + ;) (NP).
The equations

t==2ri(z—x;)/{(z— 2, —T4)
(4)
s==2r(y—uy)/(z— 2z —r1i)

express the inverse transformation.
The points which are not inside the j-th sphere satisfy the following
inequality
(@—2;)" + (y —y;) + (2 =) 2 v}, ()

On the other hand, the points of the i-th sphere’s surface which are outside
of the j-th sphere or on its surface, satisfy Eq. (2) and Eq. (5). Transfor-
mation of those points to the (¢, s) plane using Eq. (3) leads to

al(t* + %) + bit + s + dj > 0, (6)
where
a; = (@i — )2+ (W —¥)* + (2 + 71— 2)° - 7’]2
bt = 8rl(z; — ;)
¢k = 8rd(ys — yj)
di =4r? [(zi — ;)2 + (i —y;)° + (2 — 1 — 25)° = 17] .

Let us denote by Q; the set of the points on (¢, s) plane which correspond
to B;(S) by the stereographic projection. Define ¥; = {j; S; is a neighbor
of S;}. So, ¥, is a set of indices of neighbors of S;. Then

Qi ={(t,s); ai(t®+s*)+bit+cis+d; >0 forall je¥,;}. (8)

Since (6) represents either interior of a circle (az» < 0) or exterior of a circle
(aé > 0) or half plane (a§ = 0) then ; is an intersection of those parts of
(¢, s) plane (see figure 2). It is easy to see that if S; has no neighbors then
Q; = R? and B;(9) is the whole surface of S; and the corresponding surface
integral is equal (4/3)773 (the i-th sphere’s volume). On the other hand, if
the whole surface of S; C |J S; then B;(S) =0 and Q; = 0.
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Figure 2: The plane image €; of the surface part B;(S)

2.2 zdzx dy computation
Bi(S)

For computing the surface integrals in Eq. (1) we will use the known formula
which transforms the surface integral to the double integral. In view of
Eq. (3) we have the Jacobian

o 0o
ot 05
\-7i<ta5) =
9% %y
dt. 03
e 0n 2
Jilt, s) = 1615 o B St

“(t2 + 82 + 4r2)3°
Consequently,

8r3
//zda:dy = /{zZ + 7 — m}%(t,s)dtds
Q) : :

B, (S) (9)
12877 //{8Q(t’8) = ap(t’s)} dtds < I,
ot 0Os
Q;

Il



where

3 t t
Qe s) = 3(t2 + s2 + 4r?)3 * 192r}(t2 + 5% 4 4r2)
t [ 1 2i + T’I'-
T T a0 182 167 |
P(t,s) = —° + —
’ 3(t2 + 82 +4r2)3  192rd(12 + s? + 4r2)
-5 (1 zi+ 7]
+ (82 + 82 + 4r2)2 [4872 163 |

At first, we assume that €2; is bounded. Then applying Green’s theorem
to Eq. (9) we transform the double integral to the curve integrals in the
following way

Z;

128r] tds —sdt 2r3 tds — sdt
=73 f @+ a2 3 f @ ts214r?)
B(4) B()
8r#(3z; + 27y) tds — sdt
- 3 ?{ (82 + 52 + 4r2)2°

B(Q:)

where B(£2;) is the boundary of ;. Therefore, B(£;) is generated by points
of (t,s) plane satisfying

CL;(t2 + 5%) + b;t + c;s + d;- =0, forsomeje€ ¥, (10)

Eq. (10) describes either a circle (a} # 0) or a line (a} = 0). Hence, B(;)
consists of parts of circles or parts of lines. It is easy to see that ag- =0
geometrically corresponds to the situation when the surface of j-th sphere
passes through the North Pole of the i-th sphere.

9.3 tds — sdt tati
. computation
(2 + a2 0P
B(§%)
Let N; C ¥; be the set of order numbers of the spheres which intersect the
i-th sphere, and Aj- be the number of arcs which generate the boundary of
; and descend from the j-th sphere and all arcs C]’ 5 together form the
boundary of €. C]’ ), are oriented positively with respect to §; when a§~ <0
and negatively, otherwise. Each arc C]Z 5 is part of a circle or a line. Then



we have

tds — sdt tds — sdt
% (t2 + 52 + 4r2)k Z Z ]{ mt2+32+4ri2)k’ k=1,2,3. (11)
B(:) JEN; A= 1

In order to simplify the formulas we will omit the upper index 7 further in the
text everywhere, except the cases when it may cause misunderstanding. To
compute the volume V'(S), it is sufficient to give formulas for the following
curve integrals:

tds — sdt

Jo= ¢ 78 - p_ 1923

k ?{(t2+s2+4r3)k 3
Cj.a

There are two possibilities. If Cj » is the circlular arc given by Eq. (10)
(where a; # 0) then Cj ) is parametrized as follows:

t =1ty +rocosy
for ¢ € (ajxr;Bir). (12)
§ =89+ rosiny .

After some computations we arrive to the following relations.

Bix—ajr+ (r§ — ALy

J1=

2 1
L _ht@-AL L+l A
2 4 3 3 3 s
where
B J
4
I . k=1,2,3
k (A+ Bcosyp + Csing)F
Qo
with 2042 2. .2
B =torg, C=sor0, A= o +t°;s°+ro
and
b; ; b2 + c% — 4a;d;
to= -2 sp=—-D py= ]2 iy
2a; 2a; 4a3

If we denote
D=A%2-B?_-C?



then one can verify that for the case when §;) — a;x < 27 the following
formulas hold

2 [rx Acos™ + Bceost + Csint
I, = — | = —arctan ,
D |2 VDsin™
where 8
cos™ = cos --7‘)‘———_047_)" cosT = cos Qjx +BJ7)\,
2 2
Sil’l+ = sin M’ sin™ = gip 202 — 252 ﬂ], a], :
2 2
I2 = 1 —BSin:L‘-!-CCOS‘.'L‘ 'Bj’)‘ +AIl
A2 -B2-C? | A+ Bceosz+Csinz|,
I 1 —Bsinz + Ccosz  |P*
3= —= -
2D | (A+ Bcosz + Csinz)? .
Bi,
=Esinz +  cosz o 242 + B2 + C?
A+ Bcosz+Csinz 2AD z
(2779

For the case when 3 — a = 27 the integrals I;, Iz, I3 are equal:

27 2rA m(24% 4+ B? + C?)

Il = ma ‘ 2= —b—é—/_z'a I3 = D5/2

For Ij there exist explicit formulas (see, for example, [6]).

Now we consider the second case, namely the extreme situation when
Cj,» is a line segment with the start point A = (¢, so) and the end point
B = (t1,s1). In view of Eq. (10) let us assume that C; lies on the line
bjt + cjs + d; = 0. Then we can describe Cj ) as follows

t=tg+kcj
for ¢ € (0;1), (13)
s=s8y—kbj-p

where k = (t1 — to)/c; = —(s1 — $0)/b;. In this case

kd; ~ kd;~
Ji = CJ I, Jo = 02] L,
kd; B B
Jz = ? +C + 3]2

4(AC-B?) |(C+2B+A2 A2 C



where

~ C B+C B
Il = \/ﬁ [arctan ﬁ — arctan \/—2—6’—__—.————132} s
~ C? B+C B
L=t =B [C+2B+A A+Il]
with

A=4r2 +t3+ s, B=k(cjto—b;s0), C=0b2+c.

In the case when Q; is unbounded, but Qf = R? — Q) is bounded we can
use the following equality

167 //[aQts) (,g )] dtds+
+ 167; //[ QL 6 (,gi S)] dtds:%m‘?,

for computing of surface integral in Eq. (9).
When both regions §2; and 2 are unbounded then

tds — sdt . / tds — sdt —0, j=23,

) Eres 2= A, (2452 +4r2)
C(r) C(r)

(14)
where C(r) is a positively oriented circle part with the fixed center point
accordant to the radius r and the angle .

Let Cj,» be the half line segment with starting point (¢, so) which lies

on the line p: b;t +¢;s + d; = 0. Denote

A=4r? +t3+ s}, B=k(cjto—b;s0), C=0b}+c

and
I —C— r arctan —~——§———~]
‘T VAC - B2 VAC —B2)’
Then
_kd;  kd B
h="gh =gy {Il N A] ’

(15)

G k4 3C ;_BY_B
ST 4AC-BY) |2(4C-BH)\' A)  A)’



where k = 1 in the case when the orientation of half line is in direction of
vector (cj, —b;) and k = —1 in the case when the orientation of half line is
in direction of vector (—c;, b;).

Remark 1 Using the rotations of the whole molecule one can avoid the
case of straight lines boundary parts of Q;. In this case, the boundary of €;
or §¥§ consists only of circular arcs, and Q; or Qf is bounded.

Remark 2 Following [3], the surface area of the overlapping spheres is

- tds —sdt
A= le +2r222/t2+882j4r ,

JENAl

0, € is bounded,
x(S%) = { 4nr?, Q is all plane except several rings,
2r2y, § is an angle of size v with some picked bounded part

and can be calculated together with the volume using formula for Ji.

3 Partial volume computation

In this section we deal with separate volume computation of “free part”
of some atom. In other words, let S; be arbitrary sphere. Denote by Ss,

, Sk, all nontrivial neighbors of S;. Let F = Sf ””” * denote the part of
S1 which is outside of all its neighbors Ss, ..., S;. We shall compute
volume V(F'). Gauss-Ostrogradsky theorem allows to reduce volume V (F’)
to the surface integrals

:/// dmdydz://(z—zl—rl)dxdy
//z—zl—rl dmdy+z //2—21—r1 )dz dy

B1(F) =2 g,(F)

(16)

where B(F) is the surface of F' and By(F) is a part of surface of S; which
is outside of its neighbors Ss, ..., Sy and By(F), £ =2, ..., k is defined
as a part of surface of Sy, which is inside S; and outside of all other
neighbors of S;.

10



3.1 Computation of the integral //(z — 2z —r)dzdy
By(F)

We will use the above described stereographic projection method to compute
the surface integrals in Eq. (16).

4
//z—zl—rl dmdy—128r1// t,f1+32+4 7y dt ds

B1(F)

oP(t,3) (17)
— 1 7 1 _ sy S
28r; // [ 5 s dtds
(o5

where in this case
Qt,s) = t + t + t

T 312 4 82 +4r3)3 T 48r3(t2 4+ 52+ 4r2)2 " 192ri(t2 + s2 + 4rf)’
P(t,s) = -8 -8 -8

3(t2 + s2 + 4r)3 * 48r3(t2 + 5% + 4r})? * 192rd(t2 + s2 + 4r?)’

Let us Assume that € is bounded. Then the Green’s theorem for trans-
formation of the double integral to the curve integral applied to Eq. (17)

yields
1287" tds — sdt
—z1—11)d = L
//z @ —ri)dzdy = 74(t2+s2+4r';’)3+

B1(F) B(Q1)
§_r_1_ 7{ tds — sdt +?11 7{ tds — sdt
3 (t2+s2+4r3)2 3 (t2 + 5% + 4rf)’
B(u) B(Su)

where B(Q;) is the boundary of Q;. Similarly,

//z—zl—rl da:dy—//z—zg—re dxdy+(zg—z1+re—r1 / dx dy

By(F) B (F) B¢ (F)

11



for £ =2, ..., k. To compute [[ (z— z¢ — r¢)dzdy we can proceed as
By (F)
above. Consequently, using Eq. (3) with ¢ = £ one gets

_128r] tds —sdt
//(z—zg—rg)dxdy— 3 f(t2+32+4rf)3+

B, (F) B(Q)

§_7:z j{ tds — sdt +&“2 f‘ tds — sdt
3 (t2+s2+4r2)2 3 (t% + s2 + 4r7)’

B(Q) B(S2e)

where B(€)) is boundary of €;. On the other hand,

4r? s? tds — sdt
= 167 4 28" T °  dtds = —_— 7
//dxdy // E#2+ 52 +4r3)° +4 e 8t 7{ (2 + s2 + 4r2)?

By (F) B(Q)

One can easily see, that in this case the above written formulas may be
used to calculate Ji, too. The case of unbounded domain §; is solved in a
similar way.

Remark 3 The described method for calculation of the partial volume may
be useful when we add to the molecule with known volume one new atom. In
this case we can compute its “free volume”, which will be the volume change
of the whole molecule.

Remark 4 After computing the “free volume” of the first atom S;, we can
delete this atom from the list of the spheres, and go on with computation of
the “free volume” of some other atom, and so on. This way we can compute
the whole volume of the system of overlapping spheres.

4 Numerical results

In this section we briefly describe numerical results for some “molecules”.
Three data sets were used for this purpose. First and second (see Eq. (18))
contain 3, resp. 7 spheres, the third one contains 295 atoms.

We compared the results of our analytical method with the results from
a numerical method (which is most likely not the best one). All calculations
are done on SPP’2000 machine. We failed to compare the performance of
our program with other analytical algorithms because we don’t have any at
hand by now.

12



Analytical || Division number in numerical method
method 108 208 1003
1-10~%s 7-107%s | 53-1073s | 1.2.10" s
3 atoms 211.7957 210 214.2 211.809
0.0084 0.01135 6.45- 105
52-1073s || 1.6-107%s | 1.2-107%s | 6.7-10" s
7 atoms || 211885.361 || 20151.936 | 21781.872 | 21901.006
0.079 0.0047 7.15-10~¢
3.6-1071s* || 5.4-10%s | 4.3-1071s 52s
295 atoms 2769.388 2769.071 2769.071 2768.678
1.14-107%4 | 1.14-107% | 2.56-10~*

* 3.6-101s on 600Mhz/256MB RAM Pentium
1.9-107!s on 1.8Ghz/512MB RAM AMD AthlonXP

Table 1: Comparison of numerical with proposed analytical method

0 0 0 2
11 0 0 10

000 3 -1 0 0 10

400 3 0 11 0 10 (18)

030 1 0 —-11 0 10

0 0 11 10
0 0 -11 10

Corresponding first rows in each section of the table 1 contain computa-
tion time in seconds, second rows contain the computed volume and third
rows contain relative error of “numerical results”.

5 Conclusion

We can see from table 1 that the proposed analytical method is faster than
numerical method with sufficient points density. It can successfully run
on parallel computers. The computation time of simultaneous calculation
surface area and volume is practically the same as the time for volume
computation only.

This work was supported by the RFBR, 02-01-00606
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AiipsH D. A. ¥ 1p. E11-2002-296
BhHICTpEIH aHAIMTHYECKHI METOA BBIYHCIIEHHS 00beMa
HepeKpHIBAIOLIMXCS 1IapOB

TlpennoxeH TOYHbIH aHANMUTHYECKHH MeTol pacyera obumero o6nema mepe-
KpbIBaIOUIMXCS 11apoB. B paccMoTpenHO# npouenype o0seM BhipaxaeTcd Kak Io-
BEPXHOCTHbIH HHTErpan BTOPOro poxa IO 3aMKHYTOH MOBepXHOCTH. IIpu Hcmons-
30BaHHH cTepeorpathHIecKOi NMPOEKLHU 3TOT MHTErpal mpeobpasyercad B CyMMY
IBOMHBIX WHTETPANIOB U Jajice B CYMMY KPHBOJIMHEHHBIX HHTETPATIOB.

Iocsne HeGoNbIIUMX H3MEHEHHH NPEIIOXKEHHBIH METON MOXET OBITh HCIIONB30-
BaH A pacyeTa YaCTHYHOIO «CBOGOIHOro» o0beMa OTAENBHOrO 1Iapa.

PaGota sbmondena B Jlaboparopuu ungopManuosHbix TexHonoruii OUSINU.

Coobuenne OObeIHHEHHOrO HHCTHTYTA AAepHLIX HccnemoBanuit. Tybua, 2002

Ayrjan E. A. et al. . E11-2002-296
Fast Analytical Method for Computing Volume
of Overlapping Spheres

An exact analytical method for the calculation of volume of overlapping
spheres is presented. In the considered procedure the volume is expressed as a sur-
face integral of the second kind over the closed region. Using the stereographic
projection the surface integral is transformed to a sum of double integrals which
are reduced to curve integrals.

Slightly modified, this method can be used for calculation of a partially «free»
volume of a separated sphere.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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