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Spherical Model in a Random Field

We investigate the properties of the Gibbs states and thermodynamic observables
of the spherical model in a random ˇeld. We show that on the low-temperature
critical line the magnetization of the model is not a self-averaging observable, but
it self-averages conditionally. We also show that an arbitrarily weak homogeneous
boundary ˇeld dominates over 	uctuations of the random ˇeld once the model transits
into a ferromagnetic phase. As a result, a homogeneous boundary ˇeld restores the
conventional self-averaging of thermodynamic observables, like the magnetization
and the susceptibility. We also investigate the effective ˇeld created at the sites
of the lattice by the random ˇeld, and show that at the critical temperature of the
spherical model the effective ˇeld undergoes a transition into a ferromagnetic phase
with long-range correlations ∼ r4−d.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

The spherical model [5] is a lattice model where a (thermodynamic) random
variable xj is attached to every site j of a subset Vn of a d-dimensional square
lattice Zd. This model is one of a handful of models where exact results can
be obtained in the presence of a random ˇeld {hj , j ∈ Zd}. Thermodynamic
properties of such a spherical model outside the low-temperature critical line
were studied by Pastur in the paper [12]. The magnetization on the critical line
was also derived there in the limits h0 → ±0, where h0 is the expected value of
the random ˇeld.

Some thermodynamic characteristics have discontinuities on the critical line,
and, depending on the boundary conditions and the exact details of passing to the
thermodynamic limit (Vn ↑ Zd), those characteristics can have different limiting
values. Their values in the limits h0 → ±0 are, in some sense, extreme points
of the sets of all possible limiting values. For some models those sets contain
simply all linear combinations of the extreme values. For disordered models, like
the spherical model in a random ˇeld, that is not necessarily the case. The aim
of this paper is to study thermodynamic properties of the spherical model directly
on the low-temperature critical line.

Many models in statistical mechanics are complicated enough to force us to
restrict the investigation to ˇnding only certain thermodynamic averages. For
instance, sometimes investigation of magnetization is reduced to calculation of
the averages

〈mN 〉 =
1
N

∑
j∈V

〈xj〉,

where 〈·〉 denotes the average over the Gibbs distribution. However, as a rule,
for a satisfactory understanding of properties of a particular model (especially on
a critical line) one has to know distributions of various macroscopic (and, ideally,
microscopic) quantities. For that reason in the present paper we study the limiting
Gibbs states and the distributions of thermodynamic observables.

One of the properties particular to disordered systems in statistical mechanics
is the self-averaging of thermodynamic observables, introduced by Pastur and
Figotin in the paper [10]. There they also proved a general theorem concerning
the self-averaging of thermodynamic observables for a wide class of models. By
observables they meant quantities already averaged over the Gibbs distribution.
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For disordered systems involving a (realization of a) random ˇeld {hj, j ∈ Zd}
the self-averaging is deˇned as follows.

Deˇnition 0 (see [10]). A thermodynamic observable 〈QN 〉 is self-averaging,
if

lim
N→∞

〈QN 〉 = Q (1)

exists and is the same for almost all realizations of the random ˇeld, where N is
the size of the system.

The name self-averaging indicates that one does not have to average the
thermodynamic observable QN over the distribution of the random ˇeld. Indeed,
the limiting distribution is concentrated at the average value, since Eq. (1) trivially
implies

lim
N→∞

〈QN 〉 = EQ,

where E(·) denotes the average over the distribution of the random ˇeld. As a
rule, self-averaging observables are uniformly integrable, see [6, 14], hence, it is
also true that

lim
N→∞

E〈QN 〉 = Q.

From probabilistic point of view there are no fundamental differences between
the thermodynamic randomness (described by the Gibbs distribution) and the
randomness of the ˇeld {hj, j ∈ Zd}. Therefore it seems natural to get rid of the
thermodynamic averages in the deˇnition of self-averaging for observables like
the magnetization.

Deˇnition 1. A thermodynamic observable QN is self-averaging, if

lim
N→∞

QN = Q (2)

exists and is the same for almost all realizations of the random ˇeld {hj , j ∈ Zd},
where the limit is understood in probability w.r.t. the thermodynamic randomness.

There are thermodynamic observables which are not self-averaging on critical
lines/points, having continuous (non-thermodynamic) distributions. For instance,
it is widely known that the susceptibility

χN =
1
N

N∑
j,k=1

〈xjxk〉 − 〈xj〉〈xk〉

is an observable of that kind. On the other hand, there are observables which
distributions concentrate at a few (two or more) points. This fact motivated the
authors of the paper [3] to introduce the notion of the conditional self-averaging.
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Deˇnition 2 (see [3]). A thermodynamic observable QN is conditionally
self-averaging, if

lim
N→∞

QN − E(QN |ξN ) = 0, in probability, (3)

where E(·|ξN ) are the conditional averages w.r.t. a sequence of functions of the
random ˇeld {hj , j ∈ Zd} which obtain only a ˇnite number of values, F , the
same for all N .

For an illustration of the notion of conditional self-averaging one can look
at the random-ˇeld CurieÄWeiss model, see [3]. In this model a conditionally

self-averaging observable QN is the magnetization
1
N

N∑
j=1

sj , the sequence of

functions ξN is the sign of the total random ˇeld

ξN = sgn

⎛⎝ N∑
j=1

hj

⎞⎠ ,

and E(QN |ξN ) ∼ ξNm∗, where m∗ is the spontaneous magnetization.
For a self-averaging observable QN both thermodynamic (described by the

Gibbs distribution) and non-thermodynamic (produced by the random ˇeld) 	uc-
tuations vanish as N → ∞. It seems useful to introduce exponents which indicate
how fast that happens. The exponent ρ, related to non-thermodynamic 	uctua-
tions, is deˇned by

〈QN − E〈QN 〉〉 = N−ρrN , (4)

as N → ∞, where the sequence of random variables rN converges to a random
variable with a proper, non-degenerate distribution. The exponent τ , indicating
the magnitude of thermodynamic 	uctuations, is deˇned by

QN − E〈QN 〉 − N−ρrN = N−τ tN , (5)

as N → ∞, where, again, the sequence of random variables tN converges to a
random variable with a proper, non-degenerate distribution. The deˇnitions of
exponents ρ and τ generalize straightforwardly to the case of conditional self-
averaging.

As a rule, thermodynamic systems outside critical lines/points are collections
of random variables {xj}N

j=1 with short-range correlations. In this case one

usually has self-averaging with the exponents ρ = τ =
1
2
. More precisely,

mN =
1
N

N∑
j=1

xj = x + N− 1
2 rN + N− 1

2 tN .
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The exponents ρ and τ are not fundamentally novel quantities. For most com-
monly used thermodynamic observables QN they are related in some way to the
standard critical exponents. The values of exponents for the magnetization of the
spherical model are calculated in this paper.

Somewhat different terminology was used in the papers [1, 5]. There self-

averaging with exponents ρ = τ =
1
2

is called strong self-averaging, while

self-averaging with exponents ρ ∈
(

1
2
, 1
)

and τ ∈
(

1
2
, 1
)

is called weak self-

averaging.
Some general results on the behaviour of models under the in	uence of

random ˇeld were obtained in the 70s and 80s by application of the renormal-
ization group ideas to the GinzburgÄLandau model, see [2, 8]. In particular, it
was noticed that the random-ˇeld 	uctuations dominate over the thermodynamic
	uctuations as the critical point is approached. This observation suggests that the
random-ˇeld 	uctuations also dominate on the low-temperature critical line, and
hence one should have τ > ρ there. This is indeed the case for the magnetization

of the spherical model, and we will see in Section 6 that in this case ρ =
1
2
− 2

d

and τ =
1
2
− 1

d
.

The rest of the paper is organized as follows. Section 2 contains the exact
deˇnition of the spherical model, the random ˇeld and the boundary conditions.
It also contains some well-known technical results for the use in the later sections.
Section 3 summarizes the main results of the paper. In Sec. 4 we calculate the
free energy of the spherical model as an illustration of the application of saddle-
point method in the low-temperature region. In Sec. 5 we described in detail
the properties of the spherical model (the random ˇeld {xj , j ∈ Zd}) in the
inˇnite-volume limit. In Sec. 6 we provide an analogous detailed description for
the magnetization of the spherical model. The results of Secs. 5 and 6 in the
absence of the boundary ˇeld are derived in Section 7. The results of the paper
are discussed in Sec. 8.

2. THE MODEL AND USEFUL FACTS

The spherical model describes a collection of random variables {xj , j ∈ Zd}
placed at sites of an integer d-dimensional lattice, Zd. Every site j ∈ Zd is
speciˇed by its d integer coordinates (j1, j2, ..., jd).

To deˇne the distribution of random variables at all sites of the lattice, we
ˇrst specify the joint distribution for the random variables in a ˇnite rectangle

Vn = {j ∈ Zd : 1 � jν � n, ν = 1, 2, ..., d}
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containing N ≡ nd sites, and then pass to the limit n → ∞. To avoid unnecessary
complications we impose periodic boundary conditions in dimensions 2, 3, . . . , d.
Thus the boundary of the rectangle Vn is the set

Bn = {j ∈ Vn : j1 = 1, n}.

The Hamiltonian. The random variables located in the rectangle Vn inter-
act with the boundary ˇeld, the external random ˇeld, and each other via the
Hamiltonian

Hn = −J
∑

j,k∈Vn

Tjkxjxk −
∑
j∈Vn

hjxj − b
∑

j∈Bn

xj ,

where J > 0, Tjk are the elements of the nearest-neighbour interaction matrix,
{hj, j ∈ Zd} is a ˇxed realization of the external random ˇeld, and b is the
boundary ˇeld.

The Interaction Matrix. The elements of the interaction matrix T̂ are
given by

Tjk =
d∑

ν=1

J (ν)(jν , kν)
∏

l∈{1,2,...,d}\ν

δ(jl, kl),

where

δ(jl, kl) =
{

1, if jl = kl

0, if jl 
= kl

is the Kronecker delta.
The coefˇcients J (1)(j1, k1) are the elements of the n×n tri-diagonal matrix

Ĵ (1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

1
2 0 1

2 0
1
2 0

. . .
. . .

. . .
. . .

. . . 0 1
2

0 1
2 0 1

2
1
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The coefˇcients J (ν)(jν , kν), for ν = 2, 3, . . . , d, are the elements of the matrices
Ĵ (ν) which have extra 1/2 at the upper right and lower left corners (due to the
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periodic boundary conditions)

Ĵ (ν) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

1
2

1
2 0 1

2 0
1
2 0

. . .
. . .

. . .
. . .

. . . 0 1
2

0 1
2 0 1

2
1
2

1
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of the matrix Ĵ (1) are given by

Λl = cos
πl

n + 1
, l = 1, 2, . . . , n.

The corresponding orthonormal (that is, orthogonal and normalized) eigenvectors
are given by

v(l) =

{
v(l)

m =

√
2

n + 1
sin

πlm

n + 1

}n

m=1

, l = 1, 2, . . . , n.

The eigenvalues and orthonormal eigenvectors of the matrices Ĵ (ν), for ν =
2, 3, . . . , d, are given by

λl = cos
2π(l − 1)

n
, l = 1, 2, . . . , n,

and

u(l) =

{
u(l)

m =

√
2
n

cos
[
2π(l − 1)(m − 1)

n
− π

4

]}n

m=1

, l = 1, 2, . . . , n.

Finally, the eigenvalues of the interaction matrix T̂ are the sums of the eigenvalues
of the matrices Ĵ (ν)

λk = Λk1 +
d∑

ν=2

λkν , k ≡ (k1, k2, . . . , kd) ∈ Vn.

The corresponding orthonormal eigenvectors are the products of the eigenvectors
of the matrices Ĵ (ν)

w(k) =

{
w

(k)
j = v

(k1)
j1

d∏
ν=2

u
(kν)
jν

}
j∈Vn

, k ≡ (k1, k2, . . . , kd) ∈ Vn. (6)
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The External Random Field. We assume that the coefˇcients {hj , j ∈ Zd}
are a ˇxed realization of independent normal random variables {hj , j ∈ Zd}
with zero mean and variance h2. The assumptions of independence and normal
distribution are made to avoid unnecessary complications. The behavior of the
model is very different if the random variables {hj , j ∈ Zd} have, say, Cauchy
distribution, or, if the random variables have strong negative correlations severely
suppressing 	uctuations of sums like

∑
j∈Vn

hj . Nevertheless, we restrict our at-
tention to the technically convenient case of independent normal random variables
where the 	uctuations are neither abnormally large, nor abnormally small.

The Gibbs Distribution. The distribution of the thermodynamic random
variables {xj , j ∈ Vn} is speciˇed by the usual Gibbs density

p({xj , j ∈ Vn}) =
e−βHn

Θn
,

with respect to the spherical a priori measure

μn(dx) = δ

⎛⎝∑
j∈Vn

x2
j − N

⎞⎠ ∏
j∈Vn

dxj .

The normalization factor (partition function) Θn is given by

Θn =
∫ ∞

−∞
. . .

∫ ∞

−∞
e−βHnμn(dx). (7)

Useful Estimates. Equations (8)Ä(12) below state well-known results which
are used throughout the paper. A routine analysis of the singularity at ω1 = ω2 =
. . . = ωd = 0 shows that the function

W
(m)
d (z) ≡

∫ π

−π

. . .

∫ π

−π

1(
z −
∑d

ν=1 cosων

)m

d∏
ν=1

dων

2π
< ∞ (8)

at z = d if d > 2m.
Let γ ∈ [0, 2), ζ > 0, and zn = λmax + ζn−γ , then we have as n → ∞

1
N

∑
k∈Vn

1
(zn − λk)m = W

(m)
d (zn) − 1

2n
�W

(m)
d (zn) + o

[
exp
(
−n1−γ/2c(ζ)

)]
,

(9)
where

�W
(m)
d (zn) ≡ W

(m)
d−1(zn − 1) + W

(m)
d−1(zn + 1) − 2W

(m)
d (zn),

and c(ζ) is strictly positive and increasing for ζ > 0.
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If γ = 2, ζ � 0, and d > 4, then

1
N

∑
k∈Vn

′ 1
λmax + ζn−2 − λk

= W
(1)
d (d)− 1

2n
�W

(1)
d (d)−ζW

(2)
d (d)n−2+o(n−2),

(10)
as n → ∞, where the prime indicates that the summation does not involve
k = (1, 1, . . . , 1).

If d > 2m, and ζ � 0, then

1
N

∑
k∈Vn

′ 1
(λmax + ζn−2 − λk)m = W

(m)
d (d) + o(1), (11)

as n → ∞. Approximation of sums of the type (9), (10) by integrals was analyzed
in [4, 7]. For an outline of a method particularly suited for the above sums
see [11].

If m > 0 and d > 2m, then

∫ π

−π

. . .

∫ π

−π

exp
(
i
∑d

ν=1 xνων

)
(
d −
∑d

ν=1 cosων

)m

d∏
ν=1

dων

2π
∼ Γ(d/2 − m)

2mπd/2Γ(m)

(
d∑

ν=1

x2
ν

)m−d/2

,

(12)
as
∑d

ν=1 x2
ν → ∞. For a derivation of the above asymptotic formula in the case

m = 1 see, e. g., [9]. The method used in [9] can be also applied in the case
m > 0.

Finally, a direct numerical computation of the multiple integrals W
(m)
d (z)

is an awkward task. Fortunately, for m > 0 and z � d, it is reduced to the
following integral of the Bessel function I0(x):

W
(m)
d (z) =

1
Γ(m)

∫ ∞

0

dv vm−1e−zvId
0 (v).

3. THE MAIN RESULTS

Usually thermodynamic properties are derived in the limit of an inˇnitely
large lattice. In our case the results are most conveniently formulated in a contin-
uum limit. We choose to use the version of continuum limit where the limiting
conˇgurations are random functions deˇned on the d-dimensional rectangle [0, 1]d:

{x(γ)}γ∈[0,1]d ≡ {x(γ1, γ2, . . . , γd)}γ1,γ2,...,γd∈[0,1].

For any γ ∈ [0, 1]d the random variable x(γ) is deˇned as the following limit in
distribution:
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x(γ) d= lim
n→∞

x([γ1n],[γ2n],...,[γdn]),

where [y] is the integer part of y.
Thermodynamic random variables x(γ) and x(δ) are limits of the random

sequences x([γ1n],[γ2n],...,[γdn]) and x([δ1n],[δ2n],...,[δdn]) separated by a distance of
order n. Hence, in the continuum limit the random variables x(γ) and x(δ) with
γ 
= δ are independent due to the exponential/power-law decay of thermodynamic
correlations in the high/low temperature region.

Unless explicitly stated otherwise, in this paper we consider dimensions d � 5
and inverse temperatures β > βc, where β−1

c is the critical temperature of the
spherical model in external random ˇeld, see the paper by Pastur [12].

Denote ϕ(1,1,...,1) the projection of the external random ˇeld on the eigenvec-

tor w(1,1,...,1) corresponding to the maximal eigenvalue of the interaction matrix

ϕ(1,1,...,1) =

√
2

nd−1(n + 1)

∑
l∈Vn

sin
πl1

n + 1
hl.

The main results of the paper can be stated as follows.
1. In the absence of the boundary ˇeld, b = 0, the random variables x(γ)

have normal distributions with the expected values

〈x(γ)〉 = sgn
[
ϕ(1,1,...,1)

]
sin(πγ1)

√(
1 − βc

β

)
W

(1)
d (d)
βcJ

+ qγ ,

and the variances

〈x2(γ)〉 − 〈x(γ)〉2 =
1

2βJ
W

(1)
d (d),

where qγ are independent realizations of zero-mean normal random variables with
the common variance (

h

2J

)2

W
(2)
d (d).

2. For a ˇxed realization of the external random ˇeld, the law of large
numbers is valid for the normalized sums

mn ≡ 1
N

∑
j∈Vn

xj ,

as n → ∞. The convergence to the limiting value can be summarized by the
following asymptotic formula:

mn ∼ sgn
[
ϕ(1,1,...,1)

] 2
π

√(
1 − βc

β

)
W

(1)
d (d)
βcJ

+ n2−d/2qn+

9



+
n−d/4√

|ϕ(1,1,...,1)|
Nn

⎛⎝0,
8

π2β

√(
1 − βc

β

)
W

(1)
d (d)
2βcJ

⎞⎠ ,

where qn is a realization of a zero-mean normal random variable with the variance

2
7π2 − 69

3π6

(
h

2J

)2

.

Hence, the magnetization mn is (only) conditionally self-averaging with the ex-

ponents ρ =
1
2
− 2

d
and τ =

1
4
.

3. For b 
= 0 the random variables x(γ) have normal distributions with
expected values

〈x(γ)〉 =
b

J

cosh
[
(1 − 2γ1)

√
ζ0

]
cosh

√
ζ0

+ qγ ,

and variances

〈x2(γ)〉 − 〈x(γ)〉2 =
1

2βJ
W

(1)
d (d),

where ζ0 is a solution of Eq. (16), and qγ are independent realizations of zero-
mean normal random variables with the common variance(

h

2J

)2

W
(2)
d (d).

4. For b 
= 0, the law of large numbers is valid for the normalized sums

mn ≡ 1
N

∑
j∈Vn

xj ,

as n → ∞. The convergence to the limiting value can be summarized by the
following asymptotic formula:

mn ∼ b

J

tanh
√

ζ0√
ζ0

+ n2−d/2qn + n1−d/2Nn

(
0,

1
4βJζ0

(
1 − tanh

√
ζ0√

ζ0

))
,

where qn is a realization of a zero-mean normal random variable with the variance

(30). Hence, the magnetization mn is self-averaging with the exponents ρ =
1
2
−2

d

and τ =
1
2
− 1

d
.
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4. THE FREE ENERGY

The calculation of free energy, expected values and correlation functions for
the spherical models is reduced, in a routine fashion, to calculation of the large-n
asymptotics of an integral. In this section we ˇnd the large-n asymptotics for the
free energy

fn = − 1
βnd

ln Θn.

A particular attention will be paid to O(n−2) asymptotics of fn, which, as it
turns out, determines thermodynamic properties of the model below the critical
temperature.

The introduction of new integration variables {yj}j∈Vn in Eq. (7) via the
orthogonal transformation

xj =
∑

k∈Vn

w
(k)
j yk, j ∈ Vn,

where the eigenvectors {w(k)
j }j∈Vn are given by Eq. (6), diagonalizes the in-

teraction matrix. Therefore, we obtain the following formula for the partition
function:

Θn =
∫ ∞

−∞
. . .

∫ ∞

−∞
e−β ˜Hn(y)μn(dy),

where
H̃n(y) = −J

∑
k∈Vn

λky2
k −

∑
k∈Vn

ϕkyk − b
∑

k∈Vn

αkyk,

ϕk =
∑
j∈Vn

hjw
(k)
j , and αk =

∑
j∈Bn

w
(k)
j .

Since the vectors {w(k)
j }j∈Vn , k ∈ Vn are orthonormal, the random variables

ϕk =
∑

j∈Vn
hjw

(k)
j are independent normal random variables with zero mean

and variance h2. Therefore, we can treat the coefˇcients ϕk, k ∈ Vn as realiza-
tions of independent normal random variables.

A direct calculation of the coefˇcients αk, k ≡ (k1, k2, . . . , kd) ∈ Vn (using
only the formula for the sum of a geometric series) yields

αk = 2n(d−1)/2

√
2

n + 1
δ(k2, 1) . . . δ(kd, 1) ×

⎧⎨⎩ sin
πk1

n + 1
, if k1 is odd,

0, if k1 is even.

The integral representation for the delta function

δ

⎛⎝∑
j∈Vn

y2
j − N

⎞⎠ =
1

2πi

∫ +i∞

−i∞
ds exp

⎡⎣s

⎛⎝N −
∑
j∈Vn

y2
j

⎞⎠⎤⎦
11



in the a priori measure allows one to perform integration over the variables yj ,
j ∈ Vn. However, we can switch the order of integration over the variables yj ,
j ∈ Vn and s only after a shift of the integration contour for s to the right. The
shift should assure that the real part of the quadratic form involving the variables
yj , j ∈ Vn is negatively deˇned. The switching of integration order, integration
over yj , j ∈ Vn, and the introduction of a new integration variable z via s = βJz
yields

Θn =
βJ

2πi

(
π

βJ

)N/2 ∫ +i∞+c

−i∞+c

dz exp [NβΦn(z)] , (13)

where

Φn(z) = Jz − 1
2βN

∑
k∈Vn

ln(z − λk) +
1

4JN

∑
k∈Vn

(ϕk + bαk)2

z − λk
,

and c > d is the shift of the integration contour mentioned above.
The large-n asymptotics of the integral (13) can be found using the saddle-

point method. The saddle point of the integrand is a solution of the equation

Φ′
n(z) = J − 1

2βN

∑
k∈Vn

1
z − λk

− 1
4JN

∑
k∈Vn

(
ϕk + bαk

z − λk

)2

= 0. (14)

For any z > d, as n → ∞, the sequence of the derivatives Φ′
n(z) converges, with

probability 1, to

Φ′(z) = J − 1
2β

W
(1)
d (z) − h2

4J
W

(2)
d (z),

where the functions W
(m)
d (z) are deˇned in Eq. (8). The function Φ′(z) increases

monotonically with z on [d,∞), and the location of its zeroes depends on the
dimension d of the lattice. Namely, if d � 4, then the function Φ′(z) has exactly
one zero on the interval [d,∞) at a point z∗ > d, for any β � 0. If d � 5, then
there exists a critical value

βc =
1
2J

W
(1)
d (d)

1 −
(

h
2J

)2
W

(2)
d (d)

of the parameter β, see [12]. If β < βc (the high-temperature regime), then the
function Φ′(z) still has exactly one zero on the interval [d,∞) at a point z∗ > d.
While if β > βc (the low-temperature regime), then the function Φ′(z) is strictly
positive on the interval [d,∞).

The application of the saddle-point method for the integral (13) is fairly
straightforward when the saddle point z∗ is greater than d. Therefore, in this

12



paper we consider only the low-temperature regime and d � 5. When β � βc,
the function Φn(z) still attains its minimum on the interval (λmax,∞) at a point

z∗n > λmax, where λmax = d − 1 + cos
π

n + 1
is the maximum eigenvalue of the

interaction matrix T̂ . However, the sequence of saddle points z∗n approaches the
branch point of the integrand at z = λmax, and the application of the saddle-point
method becomes a bit more tricky.

To be able to apply the saddle-point method we have to ˇnd a change of
variables z = λmax + ζn−γ , such that the sequence of rescaled saddle-points
ζ∗n = (z∗n − λmax)nγ converges to a positive limit ζ∗ > 0 as n → ∞. Then, the
application of the saddle-point method for the integral over ζ becomes straight-
forward again. Note that the above search for a proper change of variables has an
important physical meaning Å nγ/2/

√
ζ∗ is the correlation length of the model.

In order to ˇnd the proper value of γ we have to analyze the sums in Eq. (14).
The large-n asymptotics of the sum

Σ1(z) ≡ 1
N

∑
k∈Vn

1
z − λk

,

when z = λmax + ζn−γ and ζ > 0, follows from Eqs. (9) and (10). Namely, as
n → ∞,

Σ1(λmax + ζn−γ) =
1

ζnd−γ
+ W

(1)
d (d) + O(n−min(γ,1)).

To ˇnd the large-n asymptotics of the sum

Σ2(z) ≡ 1
N

∑
k∈Vn

ϕ2
k

(z − λk)2

when z = λmax + ζn−γ , we have to use the law of large numbers. First, we take
out the term corresponding to k = (1, 1, . . . , 1) and rearrange the sum as follows:

Σ2(λmax + ζn−γ) =
ϕ2

(1,1,...,1)

ζ2nd−2γ
+

1
N

∑
k∈Vn

′ h2

(λmax + ζn−γ − λk)2

+
1
N

∑
k∈Vn

′ ϕ2
k − h2

(λmax + ζn−γ − λk)2
.

For ζ � 0, Eqs. (9) and (11) yield as n → ∞

1
N

∑
k∈Vn

′ 1
(λmax + ζn−γ − λk)2

= W
(2)
d (d) + o(1).

13



Let {ξj,n}n ∞
j=1,n=1 be a triangular array of independent random variables with

zero expected values. The condition

n∑
j=1

E|ξj,n|s → 0, for some s ∈ (1, 2],

as n → ∞, is sufˇcient for the validity of the law of large numbers

n∑
j=1

ξj,n → 0, in probability,

see, e. g., [6]. Therefore Eqs. (8), (9), and (11) imply

1
N

∑
k∈Vn

′ ϕ2
k − h2

(λmax + ζn−γ − λk)2
→ 0, in probability,

as n → ∞, if d > 4, and ζ � 0. Summarizing the above we obtain

Σ2(λmax + ζn−γ) =
ϕ2

(1,1,...,1)

ζ2nd−2γ
+ h2W

(2)
d (d) + o(1),

as n → ∞.
The sum

Σ3(z) ≡ 1
N

∑
k∈Vn

ϕkαk

(z − λk)2
,

with z = λmax + ζn−γ , is a realization of a normal random variable with zero
mean and the variance

σ2
n(ζ) =

1
N2

∑
k∈Vn

h2α2
k

(λmax + ζn−γ − λk)4
.

It is possible to ˇnd a relatively simple expression for the variance

σ2
n(ζ) =

2h2

nd+1(n + 1)

n∑
k=1

(1 + (−1)k+1)2 sin2 πk
n+1(

cos π
n+1 + ζn−γ − cos πk

n+1

)4 .

First, note the identity, see [11],

1
N

∑
k∈Vn

α2
k

z − λk
=

4x(z)
n

xn−1(z) + 1
xn+1(z) + 1

, (15)

where
x(z) = 1 + z − d +

√
(z − d)(2 + z − d).

14



On differentiating Eq. (15) over z three times we obtain

1
N2

∑
k∈Vn

α2
k

(z − λk)4
=

=
1

nd+1

2
(z − d)(2 + z − d)

[
1 + z − d

[(z − d)(2 + z − d)]3/2

xn+1(z) − 1
xn+1(z) + 1

− 4(n + 1)3x2(n+1)(z)
(xn+1(z) + 1)4

+

+
2(n + 1)x(n+1)(z)

(xn+1(z) + 1)2

(
n(n + 2)

3
− 1

(z − d)(2 + z − d)

)]
.

Hence, if γ ∈ (0, 2), then

σ2
n(ζ) ∼ 1

nd+1−5γ/2

2h2

(2ζ)5/2
,

as n → ∞, while if γ = 2, then λmax + ζn−γ ∼ d − 1
2π2n−2 + ζn−2, and

σ2
n(ζ) ∼ n4−dh2 t(ζ − 1

2π2), where

t(ζ) =
1
ζ

⎛⎝ 1
(2ζ)3/2

tanh
√

1
2 ζ − 1

4 cosh4
√

1
2ζ

+
2ζ − 3

12ζ cosh2
√

1
2ζ

⎞⎠.

The function t(ζ) (and similar functions below) has only a removable singularity
at ζ = 0, and the analytic continuation is to be used for negative values of ζ.
Thus

Σ3(λmax + ζn−γ) ∼ O
(
n5γ/4−(d+1)/2

)
does not produce a non-vanishing contribution to the saddle-point equation if
γ � 2.

It is also possible to obtain a simple formula for the sum

Σ4(z) =
1
N

∑
k∈Vn

α2
k

(z − λk)2

by differentiating Eq. (15) over z. The differentiation yields

Σ4(z) =
8
n

[
xn−1(z) − 1
xn+1(z) + 1

x2(z)
x2(z) − 1

+
(n + 1)xn+1(z)
(xn+1(z) + 1)2

]
.
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On replacing z by λmax + ζn−γ we obtain

Σ4(λmax+ζn−γ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4n−1+γ/2√
1
2ζ

, if γ ∈ (0, 2);

2 tanh
√

1
2 (ζ − 1

2π2)√
1
2 (ζ − 1

2π2)
+

2

cosh2
√

1
2 (ζ − 1

2π2)
, if γ = 2.

Thus the sum Σ4(z) is dominant among the four sums Σl(z), l = 1, 2, 3, 4 (if
b 
= 0), in the sense that it is Σ4(z) that controls the location of the saddle point z∗n
in the low-temperature region. Indeed, the sum Σ4(z) produces a non-vanishing
contribution to the saddle-point equation already in the scale z = λmax + ζ/n2.
Moreover, the extra contribution produced by Σ4(z) prevents the rescaled saddle-
point ζ∗n approaching the branch-point at ζ = 0, where the remaining sums could,
potentially, yield non-vanishing contributions to the saddle-point equation.

On introduction of the new integration variable ζ in Eq. (13) via z = λmax +
ζn−2 we obtain

Θn =
βJ

2n2πi

(
π

βJ

)N/2 ∫ +i∞+ζ0

−i∞+ζ0

dζ exp
[
NβΦn(λmax + ζn−2)

]
.

The saddle-point of the integrand is ζ∗ = 2ζ0 + 1
2π2, where ζ0 is a solution of

the equation

1 − 1
2βJ

W
(1)
d (d) −

(
h

2J

)2

W
(2)
d (d) = 2

(
b

2J

)2( tanh
√

ζ0√
ζ0

+
1

cosh2 √ζ0

)
.

(16)
Application of the saddle-point method yields

−fn =
1

βnd
ln Θn =

1
2β

ln
π

βJ
+ Φ(d) + n−1φ1 + n−2φ2 (2ζ0) + o(n−2),

as n → ∞, where

Φ(d) = Jd − 1
2β

Ld(d) +
h2

4J
W

(1)
d (d),

Ld(z) =
∫ π

−π

. . .

∫ π

−π

ln

(
z −

d∑
ν=1

cosων

)
d∏

l=1

dωl

2π
,

φ1 =
1
4β

ΔLd(d) − h2

8J
ΔW

(1)
d (d) +

b2

J
,

φ2(ζ) =
(

J − 1
2β

W
(1)
d (d) − h2

4J
W

(2)
d (d)

)
ζ − b2

J

√
2ζ tanh

√
1
2
ζ.
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The function Φ(z) determines the thermodynamics of the model in the high-
temperature region. The term φ1 appears because of to the lack of periodicity in
one of the dimensions. The function φ2(ζ) is responsible for the thermodynamic
properties of the model on the low-temperature critical line.

5. INDIVIDUAL DISTRIBUTIONS

To ˇnd the individual distributions of the random variables {xj , j ∈ Vn} we
calculate the corresponding characteristic functions

κj(t) = 〈exp(itxj)〉.

The saddle-point method described in the previous section yields the following
large-n asymptotics:

κj(t) ∼ exp

⎡⎢⎣− t2

4βJ

∑
k∈Vn

(
w

(k)
j

)2

z∗n − λk
+

it

2J

∑
k∈Vn

ϕkw
(k)
j + bαkw

(k)
j

z∗n − λk

⎤⎥⎦ . (17)

Therefore, for large values of n, the individual distributions of the random vari-
ables {xj , j ∈ Vn} are nearly normal with mean values

μj =
1
2J

∑
k∈Vn

ϕkw
(k)
j + bαkw

(k)
j

z∗n − λk
, (18)

and variances

σ2
j =

1
2βJ

∑
k∈Vn

(
w

(k)
j

)2

z∗n − λk
.

On substitution z∗n = d + ζ∗n−2 one obtains

σ2
j → 1

2βJ

∫ π

−π

. . .

∫ π

−π

1 − cos(j1ω1)

d −
∑d

ν=1 cosων

d∏
l=1

dωl

2π
,

as n → ∞. Thus, in the low-temperature region and in the presence of the
boundary conditions, b 
= 0, the variances of the thermodynamic random variables
xj are not affected by the random ˇeld {hl, l ∈ Zd}. As j1 increases,∫ π

−π

. . .

∫ π

−π

cos(j1ω1)

d −
∑d

ν=1 cosων

d∏
l=1

dωl

2π
∼ Γ(d/2 − 1)

2πd/2jd−2
1

→ 0.
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Hence, only random variables near the boundary have variances noticeably dif-
ferent from the bulk value

σ2
bulk ≡ 1

2βJ
W

(1)
d (d).

The ˇrst half of the sum in Eq. (18)

qj ≡ 1
2J

∑
k∈Vn

ϕkw
(k)
j

z∗n − λk

describes the shift in the expected value of xj due to the external random ˇeld.
It is a realization of a normal random variable with zero mean and variance

V 2
j ≡

(
h

2J

)2 ∑
k∈Vn

(
w

(k)
j

z∗n − λk

)2

.

As n → ∞ the variance V 2
j tends to(

h

2J

)2 ∫ π

−π

. . .

∫ π

−π

1 − cos(j1ω1)

(d −
∑d

ν=1 cosων)2

d∏
l=1

dωl

2π
.

For d > 4 we have∫ π

−π

. . .

∫ π

−π

cos(j1ω1)

(d −
∑d

ν=1 cosων)2

d∏
l=1

dωl

2π
∼ Γ(d/2 − 2)

4πd/2jd−4
1

,

as j1 → ∞. Hence, the variance V 2
j also approaches its bulk value

V 2
bulk ≡

(
h

2J

)2

W
(2)
d (d), (19)

as we move away from the boundary.
The second half of the sum in Eq. (18),

μbc
j ≡ b

2J

∑
k∈Vn

αkw
(k)
j

z∗n − λk
,

is the shift in the expected value of the thermodynamic random variables xj

due to the in	uence of the boundary conditions. An application of the ®contour
summation¯ technique, see [11], yields the following simple formula:

μbc
j =

b

J

xn+1−j1 (z∗n) + xj1(z∗n)
xn+1(z∗n) + 1

.

18



The large-n limit of μbc
j depends on the location of the node j ≡ (j1, j2, . . . , jd).

Assuming j1 ∼ γ1n as n → ∞, we obtain (recall that z∗n = λmax + ζ∗n−2 ∼
d + 2ζ0n

−2 in the low-temperature region, see Eq. (16))

lim
n→∞

μbc
j =

b

J

cosh
[
(1 − 2γ1)

√
ζ0

]
cosh

√
ζ0

≡ μbc(γ1).

The characteristic function of an arbitrary pair (xj , xl) is given by

κj,l(t, s) = 〈exp(itxj + isxl)〉 ∼ κj(t)κl(s) exp

[
− ts

2βJ

∑
k∈Vn

w
(k)
j w

(k)
l

z∗n − λk

]
,

as n → ∞. Hence, for large values of n, the joint distribution of xj and xl is
nearly normal with the covariance

cov(xj , xl) ∼
1

2βJ

∑
k∈Vn

w
(k)
j w

(k)
l

z∗n − λk
.

Since z∗n = λmax + ζ∗n−2, we have (ignoring thin layers near the boundaries)

lim
n→∞

cov(xj , xl) =
1

2βJ

∫ π

−π

. . .

∫ π

−π

exp
[
i
∑d

ν=1(jν − lν)ων

]
d −
∑d

ν=1 cosων

d∏
ν=1

dων

2π
.

Thus, the covariance cov(xj , xl) shows the usual, for the critical line of the

ordinary spherical model, power-law decay with the distance r2
j,l ≡

∑d
ν=1(jν −

lν)2 between the nodes j and l. Indeed, using Eq. (12) we obtain

cov(xj , xl) ∼
Γ(d/2 − 1)

4βJπd/2rd−2
j,l

, (20)

if 1  rj,l  n.
Summarizing, we conclude that the structure of random variables {xj , j ∈

Vn} is fairly simple. Ignoring thin layers near boundaries, we have in the limit
n → ∞

xj = qj + Nj(μbc(γ1), σ2
bulk),

where qj is a realization of a (non-thermodynamic) normal random variable with
zero mean and the variance V 2

bulk and Nj(a, b2) is a thermodynamic normal
random variable with the mean a and the variance b2, see Fig. 1.

In the presence of the boundary conditions, apart from the global in	uence
through the saddle point ζ∗, the external random ˇeld {hj, j ∈ Vn} produces
only additive contributions (random shifts) qj to the thermodynamic random
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Fig. 1. A line of a 5D realization of thermodynamic random variables {xj , j ∈ Vn} (discs)
for β > βc. The picture also contains the corresponding realization of the random ˇeld
{qj , j ∈ Vn} (circles) driving the random variables at very low temperatures

variables {xj , j ∈ Vn}. The properties of the (non-thermodynamic) random
variables {qj , j ∈ Vn} generating the shifts are fairly interesting. At the critical
temperature βc the random ˇeld {qj , j ∈ Vn} undergoes a transition into a phase
with long-range correlations, see Fig. 2.

Indeed the covariances of the random variables {qj , j ∈ Vn} are given by

cov(qj , ql) =
(

h

2J

)2 ∑
k∈Vn

w
(k)
j w

(k)
l

(z∗n − λk)2
.

Passing to the limit n → ∞ we obtain

lim
n→∞

cov(qj , ql) =
(

h

2J

)2 ∫ π

−π

. . .

∫ π

−π

exp
[
i
∑d

ν=1(jν − lν)ων

]
(
z∗ −

∑d
ν=1 cosων

)2

d∏
ν=1

dων

2π
.

If β < βc, then z∗ > d and the above integral decays exponentially with the
distance rj,l between the nodes j and l. If β � βc, then z∗ = d and Eq. (12)
yields the power-law decay

cov(qj , ql) ∼
h2Γ(d/2 − 2)
16J2πd/2rd−4

j,l

.
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Fig. 2. A line of a 5D realization of the random ˇeld {qj , j ∈ Vn} for β > βc. In
comparison with independent random variables the ˇeld {qj , j ∈ Vn} has a substantial
inertia Å positive/negative values tend to be surrounded by positive/negative values

Note that the correlations of the random ˇeld {qj , j ∈ Vn} decay noticeably
slower than the correlations of the thermodynamic random variables, see Eq. (20).
This slow decay of the covariances is the reason for the dominance of the random-
ˇeld 	uctuations over the thermodynamic 	uctuations.

6. MACROSCOPIC OBSERVABLES

Our aim in this section is to establish the law of large numbers for the
normalized sums (magnetization)

mn ≡ 1
N

∑
j∈Vn

xj (21)

and to study 	uctuations (the central limit theorem) of these sums around the
limiting value. The corresponding characteristic functions are given by

κn(t) =

〈
exp

⎛⎝ it

N

∑
j∈Vn

xj

⎞⎠〉 .

The large-n asymptotics of κn(t) is calculated using the technique of the previous
section. The saddle-point method yields

κn(t) ∼ exp

(
− t2

4βJN2

∑
k∈Vn

η2
k

z∗n − λk
+

it

2JN

∑
k∈Vn

ϕkηk + bαkηk

z∗n − λk

)
, (22)
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where (see Eq. (6))

ηk =
∑
j∈Vn

w
(k)
j = n(d−1)/2

√
2

n + 1
1 − (−1)k1

2
sin πk1

n+1

1 − cos πk1
n+1

δ(k2, 1) . . . δ(kd, 1),

for k ≡ (k1, k2, . . . , kd) ∈ Vn.
Thus, for large values of n, the distribution of the magnetization (21) is

approximately normal with the mean value

μn =
1

2JN

∑
k∈Vn

ϕkηk + bαkηk

z∗n − λk
. (23)

The sum

1
2JN

∑
k∈Vn

ϕkηk

z∗n − λk
=

n−(d+1)/2

4J

√
2

n + 1

n∑
l=1

ϕ(l,1,1,...,1)[1 − (−1)l]
1 + z∗n − d − cos πl

n+1

sin πl
n+1

1 − cos πl
n+1

is the shift in the expected value of the magnetization (21) caused by the external
random ˇeld. It is a realization of a normal random variable with zero mean and
the variance

S2
n ≡ h2n−d−1

4J2(n + 1)

n∑
l=1

1 − (−1)l(
1 + z∗n − d − cos πl

n+1

)2

sin2 πl
n+1(

1 − cos πl
n+1

)2 .

On calculating the sum over l, see [11], we obtain

S2
n =

h2n−d−1

2J2(z∗n − d)2
×

×
[

n

2
− 2xn+1(z∗n) + xn(z∗n) − x(z∗n) − 2

(xn+1(z∗n) + 1) (x(z∗n) − x−1(z∗n))
+

(n + 1)xn+1(z∗n)
(xn+1(z∗n) + 1)2

]
. (24)

In the low-temperature region we have z∗n = λmax + ζ∗n−2 ∼ d + 2ζ0n
−2, see

Eq. (16), therefore

S2
n ∼

(
h

2J

)2
n4−d

4ζ2
0

(
1 − 3 tanh

√
ζ0

2
√

ζ0
+

1
2 cosh2 √ζ0

)
, (25)

as n → ∞.
The sum

b

2JN

∑
k∈Vn

αkηk

z∗n − λk
=

b

Jn

2x(z∗n)
x(z∗n) − 1

xn(z∗n) − 1
xn+1(z∗n) + 1

22



is the shift in the expected value of the magnetization (21) caused by the boundary
conditions. On substitution z∗n = λmax + ζ∗n−2 one obtains

b

2JN

∑
k∈Vn

αkηk

z∗n − λk
∼ b

J

tanh
√

ζ0√
ζ0

, (26)

as n → ∞.
Let us now look at the variance of the magnetization. According to Eq. (22)

it is given by

σ2 ≡ 1
2βJN2

∑
k∈Vn

η2
k

z∗n − λk
=

=
n−d−1

2βJ(n + 1)

n∑
l=1

1 − (−1)l

1 + z∗n − d − cos πl
n+1

sin2 πl
n+1(

1 − cos πl
n+1

)2 .

The remaining sum over l can be calculated exactly, and we obtain the following
expression for the variance:

σ2 =
n−d−1

2βJ(z∗n − d)

[
n − 2x(z∗n) (xn(z∗n) − 1)

(x(z∗n) − 1) (xn+1(z∗n) + 1)

]
. (27)

On substitution of z∗n = λmax + ζ∗n−2 for the saddle-point one obtains

σ2 ∼ n2−d

4βJζ0

(
1 − tanh

√
ζ0√

ζ0

)
, (28)

as n → ∞.
Summarizing the above we obtain the following expression for the magneti-

zation:

mn ∼ b

J

tanh
√

ζ0√
ζ0

+ n2−d/2qn + n1−d/2Nn

(
0,

1
4βJζ0

(
1 − tanh

√
ζ0√

ζ0

))
,

(29)
where qn is a realization of a zero-mean normal random variable with the variance(

h

2J

)2 1
4ζ2

0

(
1 − 3 tanh

√
ζ0

2
√

ζ0
+

1
2 cosh2 √ζ0

)
, (30)

and Nn(μ, v2) is a thermodynamic normal random variable with mean μ and
variance v2. Therefore, the magnetization of the spherical model is self-averaging

(for b 
= 0) with the exponents ρ =
1
2
− 2

d
and τ =

1
2
− 1

d
. The limiting

magnetization m = limn→∞ mn as a function of the boundary ˇeld b is shown
in Fig. 3.
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Fig. 3. The inˇnite-lattice magnetization m = limn→∞ mn as a function of the normalized
boundary ˇeld b/J , for d = 5, βJ = 2, and h/J = 0.5. The left/right limits at b = 0 are

given by ∓2
√

2

π

√
1 − βc

β

7. THE DISTRIBUTIONS FOR ZERO BOUNDARY FIELD

As is clear from previous sections, a nonzero boundary ˇeld dominates over
the (zero-mean) random ˇeld in the low-temperature regime. Therefore in this
section we consider the case of zero boundary ˇeld.

If b = 0, then the saddle-point equation for the integral (13) is given by

Φ′
n(z) ≡ J − 1

2βN

∑
k∈Vn

1
z − λk

− 1
4JN

∑
k∈Vn

(
ϕk

z − λk

)2

= 0. (31)

Again, the saddle-point z∗n drifts towards the branch-point of the integrand in
the scale where the terms corresponding to k = (1, 1, . . . , 1) produce a non-
vanishing contribution to Φ′

n(z). As is obvious from Eq. (31), that happens in
the scale z = λ(1,1,...,1) + ζn−d/2. The distance from the saddle point z∗n =
λ(1,1,...,1) + ζ∗n−d/2 to the eigenvalues λk with k 
= (1, 1, . . . , 1) is at least of
the order O(n−2). Therefore there are no additional non-vanishing contribution
to the saddle-point equation from those eigenvalues.

In the scale z = λ(1,1,...,1) + ζn−d/2 we obtain the following saddle-point
equation in the limit n → ∞:

1 − 1
2βJ

W
(1)
d (d) −

(
h

2J

)2

W
(2)
d (d) − 1

4J2

ϕ2
(1,1,...,1)

ζ2
= 0.
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The positive solution of the above equation is given by

ζ∗ =
|ϕ(1,1,...,1)|

2J

√(
1 − βc

β

)
1

2Jβc
W

(1)
d (d)

.

The location of the saddle-point z∗n, as n → ∞, is given by

z∗n ∼ d − 1 + cos
π

n + 1
+ ζ∗n−d/2.

Evaluation of the characteristic function (17) at z∗n shows that the thermody-
namic variables xj have normal distributions with the expected values

μj =
1
2J

ϕ(1,1,...,1)w
(1,1,...,1)
j

z∗n − λ(1,1,...,1)
+

1
2J

∑
k∈Vn\(1,1,...,1)

ϕkw
(k)
j

z∗n − λk
,

and variances

σ2
j =

1
2βJ

∑
k∈Vn

(
w

(k)
j

)2

z∗n − λk
.

Assuming that j = (j1, j2, . . . , jd), and that for k = 1, 2, . . . , d we have
jk ∼ γkn with γk ∈ (0, 1), we obtain

lim
n→∞

μj = sgn
[
ϕ(1,1,...,1)

]
sin(πγ1)

√(
1 − βc

β

)
W

(1)
d (d)
βcJ

+ qγ , (32)

where γ ≡ (γ1, γ2, . . . , γd), and qγ are realizations of independent zero-mean
normal random variables with the variance V 2

bulk given by Eq. (19). An important
feature of Eq. (32) is the term sgnϕ(1,1,...,1) common to all expected values μj .
This term is the reason for the absence of conventional self-averaging for the
normalized sums (magnetization)

mn ≡ 1
N

∑
j∈Vn

xj . (33)

On substitution of the saddle point z∗n = λ(1,1,...,1) + ζ∗n−d/2 in Eq. (22) we
see that, as n → ∞, the distribution of the magnetization (33) is asymptotically
normal with the expected value

μn =
1

2JN

∑
k∈Vn

ϕkηk

z∗n − λk
∼ sgn

[
ϕ(1,1,...,1)

] 2
π

√(
1 − βc

β

)
W

(1)
d (d)
βcJ

+
1

2JN

∑
k∈Vn\(1,1,...,1)

ϕkηk

z∗n − λk
.
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On subtracting the contribution of the maximum eigenvalue from Eq. (24) one
ˇnds that the remaining sum over k is a realization of a normal random variable
with zero mean and the variance

S2
n ∼ 2

7π2 − 69
3π6

(
h

2J

)2

n4−d,

as n → ∞.
On substitution of the saddle point z∗n = λ(1,1,...,1) + ζ∗n−d/2 in Eq. (27) we

ˇnd that the thermodynamic variance of the normalized sums (33) is given by

σ2
n ∼ 8

π2

1
|ϕ(1,1,...,1)|βnd/2

√(
1 − βc

β

)
W

(1)
d (d)
2βcJ

,

as n → ∞.
Summarizing the above we obtain the following expression for the magneti-

zation:

mn = sgn
[
ϕ(1,1,...,1)

] 2
π

√(
1 − βc

β

)
W

(1)
d (d)
βcJ

+ n2−d/2qn+

+
n−d/4√

|ϕ(1,1,...,1)|
Nn

⎛⎝0,
8

π2β

√(
1 − βc

β

)
W

(1)
d (d)
2βcJ

⎞⎠ , (34)

where qn is a realization of a zero-mean normal random variable with the variance

2
7π2 − 69

3π6

(
h

2J

)2

,

and Nn(0, v2) is a zero-mean thermodynamic normal random variable with vari-
ance v2. Thus, in the absence of the boundary ˇeld, the magnetization of the

spherical model is conditionally self-averaging with the exponents ρ =
1
2
− 2

d
and

τ =
1
4
.

8. DISCUSSION AND CONCLUDING REMARKS

It was shown in the paper [3] that there are problems with almost sure con-
vergence of Gibbs states for the random-ˇeld CurieÄWeiss model in the inˇnite-
volume limit. In fact, below the critical temperature, the limits of thermodynamic
averages 〈sj〉N do not exist, almost surely, as the volume N tends to inˇnity. A
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possible solution of the convergence problem was also proposed: it is necessary
to consider the limits of distributions of 〈sj〉N , which, after some minor technical
efforts, lead to correctly deˇned random inˇnite-volume Gibbs states. The same
problem exists in the spherical model, and, most likely, in such often considered
models as the Ising model and O(n) models. Namely, for b = 0, limn→∞〈xj〉n
does not exist almost surely, although it exists in distribution. The results of the
present paper show that switching on a homogeneous boundary ˇeld rectiˇes the
problem with almost sure convergence. Namely, for b 
= 0, limn→∞〈xj〉n exists
almost surely, which (together with convergence of higher correlation functions)
means that the corresponding limit Gibbs state exists for almost all realizations
of the random ˇeld {hj , j ∈ Zd}.

The authors of the paper [1] investigated self-averaging using the ideas of
renormalization group theory. They concluded that there are universality classes
of models within which a particular non-self-averaging thermodynamic observable
has the same distribution in the thermodynamic limit. The results of the present
paper indicate that the conclusion of the paper [1] looks plausible, at least for the
magnetization. Indeed, according to Eq. (34) the magnetization of the spherical

model obtains the values ±m∗ with probability
1
2
, where m∗ is the spontaneous

magnetization. The magnetization of the CurieÄWeiss model and, most likely,
of disordered ˇnite-dimensional Ising models has the same distribution, see [3].
One can also guess that the magnetization of various disordered O(n) models is
uniformly distributed over an n-dimensional sphere. On the other hand, we also
saw that the distribution of the magnetization is highly-sensitive to symmetry-
breaking perturbations. Indeed an arbitrarily weak symmetry-breaking boundary
ˇeld restores self-averaging, that is, changes a non-degenerate distribution to a
degenerate one. Although that fact rather goes along with than contrary to the
lines of renormalization group argument.

The susceptibility of the spherical model

χn = βnd

⎡⎢⎣〈
⎛⎝ 1

nd

∑
j∈Vn

xj

⎞⎠2〉
−

⎛⎝〈 1
nd

∑
j∈Vn

xj

〉⎞⎠2
⎤⎥⎦ ≡ βnd t-Var(mn)

can be easily found from Eqs. (29) and (34). If b 
= 0, then (when properly
normalized) the susceptibility is self-averaging

χn ∼ n2

4Jζ0

(
1 − tanh

√
ζ0√

ζ0

)
,

while if b = 0 then the susceptibility is not a self-averaging observable

χn ∼ nd/2

|ϕ(1,1,...,1)|
8
π2

√(
1 − βc

β

)
W

(1)
d (d)
2βcJ

. (35)
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The susceptibility of various 3D disordered models was studied intensively
using Monte-Carlo simulations since mid-90s, see, e.g. [13, 15]. The histograms
obtained in [13,15] suggest that the distribution of the susceptibility is not normal,
positively skewed, and has heavy tails. The distribution of the susceptibility
given by Eq. (35) has the same properties, and thus, to some extend, explains the
results of Monte-Carlo simulations. It has been suggested in the paper [1] that
the distribution of susceptibility should be the same within universality classes.
Since Eq. (35) is the asymptotics of Eq. (27) at the pole z = λmax it is not
unreasonable to expect the universality of the distribution of χn for a certain
class of models. Although it is tempting to speculate that O(n) models might
belong to the universality class, nevertheless, the results of the present paper do
not indicate neither how wide the universality class is, nor which models possibly
belong to this class.

In conclusion, various disordered models have been intensively studied re-
cently either numerically or using various heuristic approaches like, for in-
stance, the renormalization group. The present paper derives explicitly dis-
tributions of various thermodynamic quantities within a non-trivial disordered
ˇnite-dimensional model Å the spherical model in a random ˇeld. The author
hopes that the paper is helpful for understanding the conclusions of heuristic
theories, and for interpreting the results of Monte-Carlo simulations.
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