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IT Tpux A.E. E17-2007-14
Cdepuueck s MoJesb B CIIyd HHOM HoOJjIe

Hccnenyrorcs cBOWCTB TMOOCOBCKUX COCTOSHUM M TEPMOAMH MHYECKUX H Oio-
I eMbIX Iy chepHyecKoil MOAenu B Ciyd iHOM BHemmHeM mone. ITok 3 HO, 4TO H
HU3KOTEMIep TYpHOH KPUTUYECKOW JMHUM H M THUYEHHOCTb MOJENIU He SBJsSeTcd
C MOYCpeIHSIOLIeNCs BEeIMYMHOM, HO C MOycpemHsieTcd YClIOBHO. T KXXe IOK 3 Ho,
4TO, K K TOJIBKO MOJE/b Nepelll B (peppoM THUTHOE COCTOSHHE, CKOJIb YTOHO CI -
60e OHOPOAHOE TP HUYHOE MOJIe JOMUHUPYET H 1 (UIyKTY LUSIMHU CIyd HHOTO IOJIA.
B pe3yabT Te OIHOPOAHOE P HHYHOE MOJIe BOCCT H BIUB €T OOBIYHYIO C MOYCPEIHS-
€MOCTb TEPMOJIH MHYECKHX H OJIIOl eMBIX, T KMX K K H M THHYEHHOCTb U BOCIIPH-
UMYHBOCTB. B p Oote T KXe uccienyercs adpeKTUBHOE I10J1e, CO31 B €MOoe B Y3l X
peLIeTKH Cllyd HWHBIM I10JIEM, U MOK 3 HO, YTO B KPUTHUYECKOH TOUKe chepudecKoi
MOJIENTH TIPOMICXONMT Mepexol 3¢h(heKTHBHOTO TN B ¢ 3y ¢ MemneHHbM (~ 7i~7)
yObIB HHEM KOPPEISLHA.

P 6or Bemonnen BJI 6op Topuu Teopernyeckoii ¢pusrnku uM. H. H. Boromo6os
OusIN.
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Spherical Model in a Random Field

We investigate the properties of the Gibbs states and thermodynamic observables
of the spherical model in a random field. We show that on the low-temperature
critical line the magnetization of the model is not a self-averaging observable, but
it self-averages conditionally. We also show that an arbitrarily weak homogeneous
boundary field dominates over fluctuations of the random field once the model transits
into a ferromagnetic phase. As a result, a homogeneous boundary field restores the
conventional self-averaging of thermodynamic observables, like the magnetization
and the susceptibility. We also investigate the effective field created at the sites
of the lattice by the random field, and show that at the critical temperature of the
spherical model the effective field undergoes a transition into a ferromagnetic phase
with long-range correlations ~ 74—,

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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1. INTRODUCTION

The spherical model [5] is a lattice model where a (thermodynamic) random
variable x; is attached to every site j of a subset V,, of a d-dimensional square
lattice Z¢. This model is one of a handful of models where exact results can
be obtained in the presence of a random field {h;,j € Z9}. Thermodynamic
properties of such a spherical model outside the low-temperature critical line
were studied by Pastur in the paper [12]. The magnetization on the critical line
was also derived there in the limits hg — £0, where hg is the expected value of
the random field.

Some thermodynamic characteristics have discontinuities on the critical line,
and, depending on the boundary conditions and the exact details of passing to the
thermodynamic limit (V,, T Z%), those characteristics can have different limiting
values. Their values in the limits hy — £0 are, in some sense, extreme points
of the sets of all possible limiting values. For some models those sets contain
simply all linear combinations of the extreme values. For disordered models, like
the spherical model in a random field, that is not necessarily the case. The aim
of this paper is to study thermodynamic properties of the spherical model directly
on the low-temperature critical line.

Many models in statistical mechanics are complicated enough to force us to
restrict the investigation to finding only certain thermodynamic averages. For
instance, sometimes investigation of magnetization is reduced to calculation of

the averages .
{my) =+ > (),
jev

where (-} denotes the average over the Gibbs distribution. However, as a rule,
for a satisfactory understanding of properties of a particular model (especially on
a critical line) one has to know distributions of various macroscopic (and, ideally,
microscopic) quantities. For that reason in the present paper we study the limiting
Gibbs states and the distributions of thermodynamic observables.

One of the properties particular to disordered systems in statistical mechanics
is the self-averaging of thermodynamic observables, introduced by Pastur and
Figotin in the paper [10]. There they also proved a general theorem concerning
the self-averaging of thermodynamic observables for a wide class of models. By
observables they meant quantities already averaged over the Gibbs distribution.



For disordered systems involving a (realization of a) random field {h;,j € A
the self-averaging is defined as follows.

Definition O (see [10]). A thermodynamic observable (Q ) is self-averaging,
if
Jim (Qn) = Q (1)
exists and is the same for almost all realizations of the random field, where IV is
the size of the system.

The name self-averaging indicates that one does not have to average the
thermodynamic observable )y over the distribution of the random field. Indeed,
the limiting distribution is concentrated at the average value, since Eq. (1) trivially
implies

(Qn) = EQ,

where E(-) denotes the average over the distribution of the random field. As a
rule, self-averaging observables are uniformly integrable, see [6, 14], hence, it is
also true that

lim
N—o0

Jim EQy) = Q-

From probabilistic point of view there are no fundamental differences between
the thermodynamic randomness (described by the Gibbs distribution) and the
randomness of the field {h;,j € Z¢}. Therefore it seems natural to get rid of the
thermodynamic averages in the definition of self-averaging for observables like
the magnetization.

Definition 1. A thermodynamic observable @)y is self-averaging, if
lim Qv =Q 2)

exists and is the same for almost all realizations of the random field {h;, j € Z4},
where the limit is understood in probability w.r.t. the thermodynamic randomness.

There are thermodynamic observables which are not self-averaging on critical
lines/points, having continuous (non-thermodynamic) distributions. For instance,
it is widely known that the susceptibility

1 N
XN = 7 > (wjan) — () (wn)
jik=1

is an observable of that kind. On the other hand, there are observables which
distributions concentrate at a few (two or more) points. This fact motivated the
authors of the paper [3] to introduce the notion of the conditional self-averaging.



Definition 2 (see [3]). A thermodynamic observable @)y is conditionally
self-averaging, if

A}im Qn — E(Qnén) =0, in probability, 3)

where E(-|{x) are the conditional averages w.r.t. a sequence of functions of the
random field {hj,j IS Zd} which obtain only a finite number of values, F', the
same for all N.

For an illustration of the notion of conditional self-averaging one can look
at the random-field Curie-Weiss model, see [3]. In this model a conditionally

N
. . . 1
self-averaging observable @)y is the magnetization ¥ Zsj, the sequence of
j=1

functions £y is the sign of the total random field

N
Ev=sgn (> h,
j=1

and E(Qn|En) ~ Enm™, where m™ is the spontaneous magnetization.

For a self-averaging observable (Jy both thermodynamic (described by the
Gibbs distribution) and non-thermodynamic (produced by the random field) fluc-
tuations vanish as NV — oo. It seems useful to introduce exponents which indicate
how fast that happens. The exponent p, related to non-thermodynamic fluctua-
tions, is defined by

(@n — E(@N)) = N""ry, “4)

as N — oo, where the sequence of random variables 7 converges to a random
variable with a proper, non-degenerate distribution. The exponent 7, indicating
the magnitude of thermodynamic fluctuations, is defined by

Qn —E{QN)—N""ry =N""tn, )

as N — oo, where, again, the sequence of random variables ¢ converges to a
random variable with a proper, non-degenerate distribution. The definitions of
exponents p and 7 generalize straightforwardly to the case of conditional self-
averaging.

As a rule, thermodynamic systems outside critical lines/points are collections
of random variables {ij}“;v:l with short-range correlations. In this case one

1
usually has self-averaging with the exponents p = 7 = 3 More precisely,

N
1 1 1
my = N]E,lmj =x+ N 2ry + N 2ty.



The exponents p and 7 are not fundamentally novel quantities. For most com-
monly used thermodynamic observables () they are related in some way to the
standard critical exponents. The values of exponents for the magnetization of the
spherical model are calculated in this paper.

Somewhat different terminology was used in the papers [1,5]. There self-

1
averaging with exponents p = 7 = — is called strong self-averaging, while

1 1
self-averaging with exponents p € (5, 1) and 7 € (5, 1) is called weak self-

averaging.

Some general results on the behaviour of models under the influence of
random field were obtained in the 70s and 80s by application of the renormal-
ization group ideas to the Ginzburg-Landau model, see [2,8]. In particular, it
was noticed that the random-field fluctuations dominate over the thermodynamic
fluctuations as the critical point is approached. This observation suggests that the
random-field fluctuations also dominate on the low-temperature critical line, and
hence one should have 7 > p there. This is indeed the case for the magnetization

2

of the spherical model, and we will see in Section 6 that in this case p = 3734
1 1
d7=-—-.
and 7=5 —

The rest of the paper is organized as follows. Section?2 contains the exact
definition of the spherical model, the random field and the boundary conditions.
It also contains some well-known technical results for the use in the later sections.
Section 3 summarizes the main results of the paper. In Sec.4 we calculate the
free energy of the spherical model as an illustration of the application of saddle-
point method in the low-temperature region. In Sec.5 we described in detail
the properties of the spherical model (the random field {z;,j € Z%}) in the
infinite-volume limit. In Sec.6 we provide an analogous detailed description for
the magnetization of the spherical model. The results of Secs.5 and 6 in the
absence of the boundary field are derived in Section 7. The results of the paper
are discussed in Sec. 8.

2. THE MODEL AND USEFUL FACTS

The spherical model describes a collection of random variables {z;,j € Z¢}
placed at sites of an integer d-dimensional lattice, Z¢. Every site j € Z¢ is
specified by its d integer coordinates (j1, j2, ..., Jd)-

To define the distribution of random variables at all sites of the lattice, we
first specify the joint distribution for the random variables in a finite rectangle

Va={j€Z":1<j <nv=12..4d}



containing N = n¢ sites, and then pass to the limit n — oo. To avoid unnecessary
complications we impose periodic boundary conditions in dimensions 2,3, ...,d.
Thus the boundary of the rectangle V,, is the set

B, ={j €Vy:j1=1,n}.

The Hamiltonian. The random variables located in the rectangle V,, inter-
act with the boundary field, the external random field, and each other via the
Hamiltonian

H,=-J Z Tjrwjry — Z hjzj —b Z Zj

J,k€Vn J€EVR JEBn

where J > 0, T}, are the elements of the nearest-neighbour interaction matrix,
{hj, j € Z%} is a fixed realization of the external random field, and b is the
boundary field.

~

The Interaction Matrix. The elements of the interaction matrix 7T are
given by

d
Tjk = Z‘](V)(juvkl/) H 6(jl’kl)’
v=1

1€{1,2,....dN\v

where
. _ 1, ifj=»FK
5‘”"”)‘{ 0. ifji#k

is the Kronecker delta.
The coefficients J(M)(jy, k;) are the elements of the n x n tri-diagonal matrix

1
0 3
1 1
3 0 3 0
1
5 0
o =
0 3
1 1
0 2 Vo
5 0
The coefficients .J*) (ju, ky), for v =23, ..., d, are the elements of the matrices

J®) which have extra 1 /2 at the upper right and lower left corners (due to the



periodic boundary conditions)

1 1
0 3 2
1 1
Lo 1 0
1
5 0
j\(u) _ .
1
0 3
1 1
) 0 2 0 3
2 2 0
The eigenvalues of the matrix JO are given by
Aj=cos——, [1=1,2,... n.
n+1

The corresponding orthonormal (that is, orthogonal and normalized) eigenvectors
are given by

o0 = Ly = 2 g TIm C1=1.2....n
n+1 n+1

m=1

The eigenvalues and orthonormal eigenvectors of the matrices J @) for v =
2,3,...,d, are given by

2r(l — 1
/\l:cos¥, l=1,2,...,n,

and

W0 — {uﬁ} _ \/?COS {2w(l—1)(m—1) _ Z]} . 1=1,2,...,n.
n n 4 .

Finally, the eigenvalues of the interaction matrix T are the sums of the eigenvalues
of the matrices J*)

d
Me=Apy + > My k= (ki ko, ka) € Vi

v=2

The corresponding orthonormal eigenvectors are the products of the eigenvectors
of the matrices J)

d
w® = {w§k) =0 ] ug’jv)} . k= (ki ko, ... kd) €V (6)
v=2 JEVn



The External Random Field. We assume that the coefficients {h;,j € Z¢}
are a fixed realization of independent normal random variables {h;,j € Z¢}
with zero mean and variance h%. The assumptions of independence and normal
distribution are made to avoid unnecessary complications. The behavior of the
model is very different if the random variables {h;,j € Z4} have, say, Cauchy
distribution, or, if the random variables have strong negative correlations severely
suppressing fluctuations of sums like > eV h;. Nevertheless, we restrict our at-
tention to the technically convenient case of independent normal random variables
where the fluctuations are neither abnormally large, nor abnormally small.

The Gibbs Distribution. The distribution of the thermodynamic random
variables {z;,j € V,,} is specified by the usual Gibbs density

¢—BHn

0, ’

p{zj,j € Va}) =

with respect to the spherical a priori measure

tn(dx) =0 Z x? —N H dx;.

JEVR JEVR

The normalization factor (partition function) ©,, is given by

0, = /OO /0C e_ﬂH”un(dx). @)

Useful Estimates. Equations (8)—(12) below state well-known results which
are used throughout the paper. A routine analysis of the singularity at w; = ws =
... = wq = 0 shows that the function

d

wm z/ﬂ.../ﬂ ! T v < 8)
@ () -7 -7 (Z—Zgzlcoswl,) H 2 =%

v=1

at z =d if d > 2m.
Let v € [0,2), ¢ > 0, and z,, = Amax + (n~7, then we have as n — oo

L o U 1 (0 DN o () a2
b3 i = e O+ oo ()

)
where

AW (20) = W™ (2 = 1) + W) (20 + 1) = 20" (20),

and ¢(¢) is strictly positive and increasing for ¢ > 0.



Ify=2,¢(>0, and d > 4, then

1 (1) 1 (1) @)y =2 =2
=W (d)——AW_ "/ (d)—CW ;" (d
Ng; oy~ W (=g AW (@) =CWD (@) n o),
(10)
as n — oo, where the prime indicates that the summation does not involve
k=(1,1,...,1).
If d > 2m, and ¢ > 0, then
1 / 1 (m)
— - =W, (d 1), 11
N}g; ()\max+cn_2 _>\k) d ( )+O( ) ( )

as n — oo. Approximation of sums of the type (9), (10) by integrals was analyzed
in [4,7]. For an outline of a method particularly suited for the above sums
see [11].

If m > 0 and d > 2m, then

exp (i0 ) D gu T@2—m) (L)
y v wy m 2
[ﬂ [ﬂ _ H 2m7rd/2r( ) <Z$y> )

m
-1 coswl,) v=1

(12)
as Z _, @2 — oo. For a derivation of the above asymptotic formula in the case
m = 1 see, e.g., [9]. The method used in [9] can be also applied in the case
m > 0.

Finally, a direct numerical computation of the multiple integrals Wém)(z)
is an awkward task. Fortunately, for m > 0 and z > d, it is reduced to the
following integral of the Bessel function Io(x):

1

chm)(z) = —F(m)/o dvvm_le_“[g(v).

3. THE MAIN RESULTS

Usually thermodynamic properties are derived in the limit of an infinitely
large lattice. In our case the results are most conveniently formulated in a contin-
uum limit. We choose to use the version of continuum limit where the limiting
configurations are random functions defined on the d-dimensional rectangle [0, 1]¢:

{m(W)}ve[O,l]d = {z(y1,72, .- a'Yd)}'yl,’yz,...,'de[O,l]~

For any 7 € [0,1]? the random variable () is defined as the following limit in
distribution:



d .
() = B0 2(fyin), rand,....bran))

where [y] is the integer part of y.

Thermodynamic random variables x(vy) and z(0) are limits of the random
SEqUENCES T([, n],[yon],....[van]) &N T([5,n],[52n],....[s.n]) SEParated by a distance of
order n. Hence, in the continuum limit the random variables z(v) and z(6) with
~ # § are independent due to the exponential/power-law decay of thermodynamic
correlations in the high/low temperature region.

Unless explicitly stated otherwise, in this paper we consider dimensions d > 5
and inverse temperatures 3 > (3., where 3.1 is the critical temperature of the
spherical model in external random field, see the paper by Pastur [12].

Denote ¢y 1,...,1) the projection of the external random field on the eigenvec-
tor w11 corresponding to the maximal eigenvalue of the interaction matrix

2 7Tl1
=4 Si h;.
P(1,1,...,1) ndfl(n—&—l) l; bmn+1 1

The main results of the paper can be stated as follows.
1. In the absence of the boundary field, b = 0, the random variables z(~)
have normal distributions with the expected values

(1)
(z(v)) = sgn [@(1,1,...,1)] Sin(7r71)\/<1 — %) W#}d) + 4,

and the variances ]
(@2 () = (20)? = 355 Wa" (@)

where ¢, are independent realizations of zero-mean normal random variables with

the common variance )
h 2
( ﬁ) W (d).

2. For a fixed realization of the external random field, the law of large
numbers is valid for the normalized sums

as n — oo. The convergence to the limiting value can be summarized by the
following asymptotic formula:

2 8. W(l) d -
My~ SgN [80(1,1,...,1)] ;\/<1 — —) Wy () 4242 o

B) B



o i\/<1_ ) W ()
loat,... 1)l w2 B) 2B

where ¢,, is a realization of a zero-mean normal random variable with the variance

277r2—69 h 2
376 2J )

Hence, the magnetization m,, is (only) conditionally self-averaging with the ex-

t L 2.
onents = — — — an = —.
p P=5 = g*T=1

3. For b # 0 the random variables z(y) have normal distributions with
expected values

=i

and variances

(#2(7)) — (a(1)? = wijwf)(d),

where (p is a solution of Eq. (16), and ¢, are independent realizations of zero-
mean normal random variables with the common variance

(%) : W (d).

4. For b # 0, the law of large numbers is valid for the normalized sums

1
JEVn

as n — oo. The convergence to the limiting value can be summarized by the
following asymptotic formula:

LbtanhvGo o a ( 1 (_tanh\/g_()))
M~ N +n Gn+mn N 0’45J40 1 e ’

where ¢, is a realization of a zero-mean normal random variable with the variance
2

1
(30). Hence, the magnetization m,, is self-averaging with the exponents p = 37 3d
1 1

dr=2>—=.
and 7 5 d

10



4. THE FREE ENERGY

The calculation of free energy, expected values and correlation functions for
the spherical models is reduced, in a routine fashion, to calculation of the large-n
asymptotics of an integral. In this section we find the large-n asymptotics for the

free energy
1
fn ="

A particular attention will be paid to O(n~2) asymptotics of f,, which, as it
turns out, determines thermodynamic properties of the model below the critical
temperature.

The introduction of new integration variables {y;};cv, in Eq. (7) via the
orthogonal transformation

k .
T = Z wj( )yk, J € Va,
keV,

Ino©,.

where the eigenvectors {wj('k)}jevn are given by Eq. (6), diagonalizes the in-
teraction matrix. Therefore, we obtain the following formula for the partition

function: - -
o [ [
where _
Hu(y)=—J Y My — D exys—b Y anyr,
keVy, keVy, keVy,
o = Z th;k)7 and o = Z w§k).
JEVR JEBn

Since the vectors {w§k)}jevn, k € V,, are orthonormal, the random variables

— Ly (F) : . .
L=, jev, hjw;" are independent normal random variables with zero mean

and variance h2. Therefore, we can treat the coefficients vk, k €V, as realiza-
tions of independent normal random variables.

A direct calculation of the coefficients ay, k = (k1,ke,...,kq) € V,, (using
only the formula for the sum of a geometric series) yields

. mhky . .
2 5 fk dd,
o, = 2002 | 30, 1) (K, 1) My TR
n+ 0, if k1 is even.
The integral representation for the delta function
) 1 +ioco )
1) Zyj—N =5 7ioodsexps N—Zyj
JEVn JEVR

11



in the a priori measure allows one to perform integration over the variables y;,
Jj € V.. However, we can switch the order of integration over the variables y;,
j € V;, and s only after a shift of the integration contour for s to the right. The
shift should assure that the real part of the quadratic form involving the variables
Y;, j € Vy, is negatively defined. The switching of integration order, integration
over y;, j € V,, and the introduction of a new integration variable z via s = 3Jz

yields
87 ( . >N/2 /+ioo+c
2mi \ BJ —ico+te

where

1 1 (o + bag)?
S,(2) =Jz — —= In(z — A ,
(2) = Jz D (== M)+ 7 D =i
kEV, kEV,
and ¢ > d is the shift of the integration contour mentioned above.
The large-n asymptotics of the integral (13) can be found using the saddle-
point method. The saddle point of the integrand is a solution of the equation

YR LS W W ol (TR AT
PHTITN s N A e ) T

For any z > d, as n — oo, the sequence of the derivatives ®/,(z) converges, with
probability 1, to

1 h?
V() = T = Wi () - W),

where the functions chm)(z) are defined in Eq. (8). The function ®’(z) increases
monotonically with z on [d, o), and the location of its zeroes depends on the
dimension d of the lattice. Namely, if d < 4, then the function ®’(z) has exactly
one zero on the interval [d, o0) at a point z* > d, for any 8 > 0. If d > 5, then
there exists a critical value

1w
2
2= () WP

of the parameter (3, see [12]. If § < (. (the high-temperature regime), then the
function ®’(z) still has exactly one zero on the interval [d, c0) at a point z* > d.
While if 3 > . (the low-temperature regime), then the function ®'(z) is strictly
positive on the interval [d, 0o).

The application of the saddle-point method for the integral (13) is fairly
straightforward when the saddle point z* is greater than d. Therefore, in this

12



paper we consider only the low-temperature regime and d > 5. When § > [,
the function ®,,(z) still attains its minimum on the interval (Apax,c0) at a point

™. . .
25 > Amax, Where Apax = d — 1 + cos p—— is the maximum eigenvalue of the

interaction matrix 7. However, the sequence of saddle points z;; approaches the
branch point of the integrand at z = Ay ax, and the application of the saddle-point
method becomes a bit more tricky.

To be able to apply the saddle-point method we have to find a change of
variables z = Apax + (n~7, such that the sequence of rescaled saddle-points
¢F = (25 — Amax)n” converges to a positive limit ¢* > 0 as n — oo. Then, the
application of the saddle-point method for the integral over ( becomes straight-
forward again. Note that the above search for a proper change of variables has an
important physical meaning — n/? /+/C* is the correlation length of the model.

In order to find the proper value of v we have to analyze the sums in Eq. (14).
The large-n asymptotics of the sum

1 1
by = — E _
=5 2 7550

keVN

when z = A\pax + (n~7 and ¢ > 0, follows from Egs. (9) and (10). Namely, as
n — 00,

1
(nd=

To find the large-n asymptotics of the sum

Y1 (Amax +¢n77) = + Wél)(d) +O(n~ min('y,l)).

E():izg"iﬁ
PUEN & g

when z = A\pax + (n~7, we have to use the law of large numbers. First, we take

out the term corresponding to k = (1,1,...,1) and rearrange the sum as follows:
2
_ Paa,... h?
Z Amax v 7
2 ) Cznd 2” N Z Amax + (77 — Ag)?

kEVR,

1 / 2 — h?
+ = .
ng‘;” ()‘max + <n77 - >\k)2

For ¢ > 0, Egs. (9) and (11) yield as n — oo

L 1 )
3 — W d) + o(1).
—~ 2 d

Nkevn (Amax + Cn R )\k)

13



Let {§;n}7_1 22 be a triangular array of independent random variables with
zero expected values. The condition

ZE|§J')”|S — 0, for some s € (1,2],
j=1
as n — oo, is sufficient for the validity of the law of large numbers
> & —0, in probability,
j=1

see, e. g., [6]. Therefore Egs. (8), (9), and (11) imply

1 / 2 — h? . .
— Z —— 3 — 0, in probability,
keV, ()\max + Cn v >\k)

as n — oo, if d > 4, and ¢ > 0. Summarizing the above we obtain

2
'
Ea(mas +(n77) = sl W2WE (@) + o(1),
as n — oo.
The sum ]
PrOk
%)= % D T
N keVy, (2= Ae)
with z = Apax + (n™7, is a realization of a normal random variable with zero
mean and the variance
1 h2a?2
2 _ k
Un(C) - N2 Z (/\max + Cnf’y _ )\k)4'

ke‘/n

It is possible to find a relatively simple expression for the variance

2y 2§~ (O e g
) = T )

g

I
_ s —y _ mk
k=1 (cos w1 Tt n cos —n+1)

First, note the identity, see [11],

1 Z al :4x(2)x"_1(z)+1 (15)

N _ n+1 ’
Nkevnz Ak n z"ti(z)+1

where

2(2)=14+z2z—d++/(z—d)(2+z—d).

14



On differentiating Eq. (15) over z three times we obtain

N2 Z Z—Ak

kEVn

1 2 14+2—d " z) -1
S ndtl (2 —d)(2+ 2 —d) |:[( —d)(2+z—d)]32 zt(z) + 1

4(n_|_ 1)3x2(n+1)(z)
(a7 1(2) + 1)*

2(n + 1)zt (2) (n(n+2) 3 1
* (z+1(2) + 1) ( 3 (z—d)(2+z—d)”'
Hence, if v € (0, 2), then
) 1 212

g

w(C) ~ nd+1-5v/2 (205/2’

as n — oo, while if v = 2, then Apax + (77 ~ d — —7r 2n72 4+ (¢n"2, and
o2(¢) ~n*~h? t({ — §7%), where

! ! tanh /¢ L + 23
¢\ (20)3/2 25>
¢\ (20 4cosh? y/ %C 12¢ cosh? 4/ %C

The function ¢(¢) (and similar functions below) has only a removable singularity
at ¢ = 0, and the analytic continuation is to be used for negative values of (.
Thus

t(¢) =

Y3(Amax +¢n77) ~ O (n5v/4—(d+1)/2)

does not produce a non-vanishing contribution to the saddle-point equation if
v <2
It is also possible to obtain a simple formula for the sum

by differentiating Eq. (15) over z. The differentiation yields

24(2’) =

8 [m”l(z) -1 2%(2) (n+1)z"+1(2)
ath(z)+122(z) -1 (antl(z) 4+ 1)2
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On replacing z by Apax + (n~" we obtain

4 —14~/2

Rl ify € (0,2);
1

\/ 3¢
EAL(Amax‘FCn_’Y) ~
2 tanh %(C — 57?) 9
+ . , ify=2.
%(C - %71'2) cosh %(C - %7‘(’2)

Thus the sum X4(z) is dominant among the four sums ¥;(z), [ = 1,2,3,4 (f
b # 0), in the sense that it is X4 (z) that controls the location of the saddle point z;
in the low-temperature region. Indeed, the sum Y,(z) produces a non-vanishing
contribution to the saddle-point equation already in the scale z = Apax + /N>,
Moreover, the extra contribution produced by X4(z) prevents the rescaled saddle-
point ¢ approaching the branch-point at ¢ = 0, where the remaining sums could,
potentially, yield non-vanishing contributions to the saddle-point equation.

On introduction of the new integration variable ¢ in Eq. (13) via z = Apax +
¢(n~2 we obtain

N/2  p+ico+(o
0, = B ( T ) / d¢ exp [NB®,, (Amax + ()] .

T 2n2mi \ BJ iootto

The saddle-point of the integrand is (* = 2{y + %’/T2, where (y is a solution of
the equation

([ ? @) N <i>2<tanh\/§_o 1 )
1 26JWd (d) <2J> Wi d) =2 ( o o +cosh2\/g_0 ,
(16)

Application of the saddle-point method yields

~fa = ﬁ n®, = % o ﬁLJ +@(d) + 1 g1+ 022 (200) +o(n”?),

as n — oo, where

1 h?

gL ey
B(d) = Jd — 55 La(d) + 575" (@),
" T d d dw
Ld(z):/_ﬂ.../_ﬂln (Z_Z;COSQ)D)HQ_WI’
2 2
01 = AL - AW @ + 7,
(L R e v 1
()= (7= Wi WP @) ¢~ & vt 3¢
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The function ®(z) determines the thermodynamics of the model in the high-
temperature region. The term ¢; appears because of to the lack of periodicity in
one of the dimensions. The function ¢2(() is responsible for the thermodynamic
properties of the model on the low-temperature critical line.

5. INDIVIDUAL DISTRIBUTIONS

To find the individual distributions of the random variables {z;,j € V,,} we
calculate the corresponding characteristic functions

#j(t) = (exp(itx;)).

The saddle-point method described in the previous section yields the following
large-n asymptotics:

(1) (K) 5
t2 (wj ) it rw; + bagw,
Kj(t) ~exp |- — > AL — 1 I an
4ﬂJ kev, Zn — /\k QJ kev, Zn — >\k

Therefore, for large values of n, the individual distributions of the random vari-
ables {z;, j € V,,} are nearly normal with mean values

)+baw k)

'LU
p=gs 3 , a8)
keV,

and variances

On substitution 2 = d + (*n~2 one obtains

/ / 1 — cos j1w1) dwl

0' .

J 2&] _— —rd— Zy 1 COSWy 1oy 21

as n — oo. Thus, in the low-temperature region and in the presence of the

boundary conditions, b # 0, the variances of the thermodynamic random variables
x; are not affected by the random field {h;, | € Z?}. As j; increases,

[/ __cosbien)  ppe TW2-1)

d— Y cosw, iy 2T 2w
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Hence, only random variables near the boundary have variances noticeably dif-
ferent from the bulk value

Ul%ulk = M—JWd(l) (d)

The first half of the sum in Eq. (18)

. 1 Z @kw](‘k)
= 2J v 25— Mg

describes the shift in the expected value of x; due to the external random field.
It is a realization of a normal random variable with zero mean and variance

k) \?

B\ 2 w;

2 J

v=(1) = (555)
ke‘/’”

As n — oo the variance Vj2 tends to

( ) / / 1—005 (jiw1) d@
2J — — _jcosw,)? T 27 .

For d > 4 we have

/ / cos jlwl) f[ dw, I'(d/2-2)
S (=0 cosw,)? 3 2m Aqd/25imT

as j; — oo. Hence, the variance Vf also approaches its bulk value

B2
Vo = (g) Wi (d). 19)
as we move away from the boundary.

The second half of the sum in Eq. (18),
b akw§k)

/Jj 2J v 2k =g

is the shift in the expected value of the thermodynamic random variables x;
due to the influence of the boundary conditions. An application of the «contour
summation» technique, see [11], yields the following simple formula:

o _ DI () 4o ()
Ky J antl(zx) +1
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The large-n limit of u?c depends on the location of the node j = (41, jo, - - -, jd)-
Assuming j; ~ yin as n — oo, we obtain (recall that 2} = Apax + (*n "2 ~
d + 2¢on~2 in the low-temperature region, see Eq. (16))

. be b cosh [(1 — 271)«/40] e
lim p/° = — =)
n—00 J cosh v/(o

The characteristic function of an arbitrary pair (x;, ;) is given by

k), (k)

kj1(t, s) = (exp(itz; + isx;)) ~ k;j(t)ri(s) exp l 2tﬁj kZV %]

as n — oo. Hence, for large values of n, the joint distribution of x; and z; is
nearly normal with the covariance

’LU](k) wl(k)

1
cov(@js ) ~ 55 Y,
Kev, “n

Since 2} = Amax + ¢*n"2, we have (ignoring thin layers near the boundaries)

4 exp 1/ 1(] - wl/i| d
lim cov(x;,z;) / /
n—oo 7 25(] -1 COS Wy, 1;[

Thus, the covariance cov(z;,x;) shows the usual, for the critical line of the

ordinary spherical model, power-law decay with the distance r] = Zﬁ:l(jl, —
1,)? between the nodes j and [. Indeed, using Eq. (12) we obtain

I(d/2 1)

42z 20
4ﬁJ7Td/2r?I2 (20)

cov(zj,xy) ~

ifl<rj; <n.

Summarizing, we conclude that the structure of random variables {z;,j €
Vi } is fairly simple. Ignoring thin layers near boundaries, we have in the limit
n — 0o

Tj =(qj +~/\[j(lu’bc(71)7 Ul%ulk)?

where ¢; is a realization of a (non-thermodynamic) normal random variable with
zero mean and the variance V2, and N(a,b?) is a thermodynamic normal
random variable with the mean a and the variance b2, see Fig. 1.

In the presence of the boundary conditions, apart from the global influence
through the saddle point ¢*, the external random field {h;,j € V,} produces
only additive contributions (random shifts) g; to the thermodynamic random
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Fig. 1. A line of a 5D realization of thermodynamic random variables {x;,j € V,} (discs)
for 8 > (.. The picture also contains the corresponding realization of the random field
{q;,J € V} (circles) driving the random variables at very low temperatures

variables {z;,j € V,}. The properties of the (non-thermodynamic) random
variables {q;,j € V,,} generating the shifts are fairly interesting. At the critical
temperature (3. the random field {q;,j € V,,} undergoes a transition into a phase
with long-range correlations, see Fig. 2.

Indeed the covariances of the random variables {q,,j € V,,} are given by

(k), (k)
h 2 w; W
COV(Q;‘»QZ) = (ﬁ) Z (2 — PYSER

keVN

Passing to the limit n — co we obtain

P exp Do 1(] wy] d
1
Jin_cov(g;, q)) = <2J> /_7r / 5 1;[

y—1 COSWy )

If 8 < B, then z* > d and the above integral decays exponentially with the
distance 7;; between the nodes j and I. If 3 > f3, then z* = d and Eq. (12)
yields the power-law decay

20(d/2 — 2)

cov(q;, q) ~ 1627721
Js
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qj :

Fig. 2. A line of a 5D realization of the random field {q;,j € V,} for 8 > .. In
comparison with independent random variables the field {qj7 j € Vi } has a substantial
inertia — positive/negative values tend to be surrounded by positive/negative values

Note that the correlations of the random field {qj, j € Vi} decay noticeably
slower than the correlations of the thermodynamic random variables, see Eq. (20).
This slow decay of the covariances is the reason for the dominance of the random-
field fluctuations over the thermodynamic fluctuations.

6. MACROSCOPIC OBSERVABLES

Our aim in this section is to establish the law of large numbers for the
normalized sums (magnetization)

1
mn = Z z; (21)
JEVR

and to study fluctuations (the central limit theorem) of these sums around the
limiting value. The corresponding characteristic functions are given by

Kn(t) = <exp % Z z; >

JEVn

The large-n asymptotics of ., (t) is calculated using the technique of the previous
section. The saddle-point method yields

t2 n? it OEMK + bagk
A1) ~ - > > .22
& ( ) eXPp ( 4ﬂJN2 e zy — Ak + 2JN e zy — Ak (22)
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where (see Eq. (6))

21— (~1)k —
- =nld-1/2,/ . il 1)... 1
Tk = Z w n+1 2 1 —cos ™ Olkz, 1) 0(ka, 1),

JEVR n+1

for k = (/ﬁ,kz, . .,kd) e V.
Thus, for large values of n, the distribution of the magnetization (21) is
approximately normal with the mean value

1 ©EMi + bagni
= . 23
Hn 2JN Z £ \g (23)
kEVn
The sum
1 ormi  n”@HD/2 Z @11l = (=1)] blnvar_+l1
2JNk€VnZ;kL_)\k n+1 1+ 22 —cos—l—cosnﬂl

is the shift in the expected value of the magnetization (21) caused by the external
random field. It is a realization of a normal random variable with zero mean and
the variance

) ]’L2 —d—1 n
S = 4J%2(n +1) Z 2 2"
1=1 <1+z* —d — cos == ) (l—cos’r—l)

n n+1 n+1

On calculating the sum over [, see [11], we obtain

1 (-1) sin? 72k

S2 B h2n7d71 y
" T 920 —d)

y [“ 20m 1 (1) + 22 — #(z) =2 | (n+ ez

2T @ () 4 D o) — 1) @)t | P

In the low-temperature region we have z* = Apax + (*n72 ~ d + 2¢on "2, see
Eq. (16), therefore

2 i>2n4d<_3tanh\/6 1 >
Sn <2J @ T T et ) 25)

as n — oo.
The sum

*

b Z apne b 2x(z;)  2"(z) —

* - 7, * n+1( %
2JN o Ais A Jna(zr) —1anti(z n) +1
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is the shift in the expected value of the magnetization (21) caused by the boundary
conditions. On substitution 2} = Apax + ¢*n~2 one obtains

b N b /G

" , (26)
2JN & zi=n VG

as n — oo.
Let us now look at the variance of the magnetization. According to Eq. (22)
it is given by

2

2 _ Z _
g = ) —
QﬂJN S )\k
B N S
- % 7l 2
28J(n+1) = 14 2} —d — cos ;25 (1 _ cos n‘[—ri-ll)

The remaining sum over [ can be calculated exactly, and we obtain the following
expression for the variance:

U [ wENEE) -y )
26J (2, — d) (z(z) — 1) ("1 (25) + 1)
On substitution of 2} = Apax + ¢ *n=2 for the saddle-point one obtains
2—d t h
o2 ~ n (1 _ M) 7 (28)
48J¢o VG

as n — oo.
Summarizing the above we obtain the following expression for the magneti-
zation:

btanh\/C_o 9—d/2 1—d)2 ( 1 ( _tanh\/(_()))
ey et A e T ) )

where ¢, is a realization of a zero-mean normal random variable with the variance

A% 1 3tanh /Co 1
(37) 16 (- 252 Hcoshm—o)’ e

and N, (u,v?) is a thermodynamic normal random variable with mean p and

variance v2. Therefore, the magnetization of the spherical model is self-averaging

1 2 1
(for b # 0) with the exponents p = 373 and 7 = 3

The limiting

SR

magnetization m = lim,_,o, m, as a function of the boundary field b is shown
in Fig. 3.
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Fig. 3. The infinite-lattice magnetization m = lim,,—..o m, as a function of the normalized
boundary field b/J, for d =5, 3J = 2, and h/J = 0.5. The left/right limits at b = 0 are

given by $M 1-— Be
™

B
7. THE DISTRIBUTIONS FOR ZERO BOUNDARY FIELD

As is clear from previous sections, a nonzero boundary field dominates over
the (zero-mean) random field in the low-temperature regime. Therefore in this
section we consider the case of zero boundary field.

If b = 0, then the saddle-point equation for the integral (13) is given by

1 1 1 o \°
il =J-— — =0. 1
) =T 55y k; 2= AJN k; <Z—Ak> 0 @b

Again, the saddle-point z; drifts towards the branch-point of the integrand in
the scale where the terms corresponding to k& = (1,1,...,1) produce a non-
vanishing contribution to ®/ (z). As is obvious from Eq. (31), that happens in
the scale z = Agq,..1) + ¢n~%2. The distance from the saddle point z; =
A1) + ¢*n~%? to the eigenvalues \;, with k # (1,1,...,1) is at least of
the order O(n~2). Therefore there are no additional non-vanishing contribution
to the saddle-point equation from those eigenvalues.

In the scale z = A1 1,...1) + ¢n~%?2 we obtain the following saddle-point
equation in the limit n — oo:

2
LR e)) A\ o 1 %1,
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The positive solution of the above equation is given by

. (1,1l

B 2J\/( - %) W@

The location of the saddle-point 2z, as n — oo, is given by

0
+1

Evaluation of the characteristic function (17) at z;; shows that the thermody-
namic variables x; have normal distributions with the expected values

1,1,...,1 k

1 90(1,1,...,1)105 ) 1 Z SOkw]( )

:u] - P + — PR )
2J Zn )\(1717.”71) kEVn\(l,l,...,l) ’Zn )\k

z;‘Lwd—1+cosn + 92,

and variances

1 (w(‘k))z
O'j = .
26T S 2= M

Assuming that j = (j1,72,-.-,J4), and that for k = 1,2,...,d we have
Jr ~ ven with v € (0,1), we obtain

(1)
ﬁc) Wd (d) _~_q’w (32)

nh—>nolo Hj = Sgn [90(1,1,...,1)] Sin(”%)\/<1 - E W

where v = (v1,72,...,74), and ¢, are realizations of independent zero-mean
normal random variables with the variance V{2, given by Eq. (19). An important
feature of Eq. (32) is the term sgn(y,1,... ;1) common to all expected values p;.
This term is the reason for the absence of conventional self-averaging for the
normalized sums (magnetization)

My = — z;. 33)

On substitution of the saddle point z;, = A(1,1,...,1) + ¢C*n~%2 in Eq. (22) we
see that, as n — oo, the distribution of the magnetization (33) is asymptotically
normal with the expected value

(1)
_ 1 PENk . 2 ﬂc Wd (d)
Hn = 2JN 2 — & sgn [Sp(lxlvwal)] 7r\/( 3 B.J

1 PRk
T ooN 2 A
keVy\(1,1,...,1)
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On subtracting the contribution of the maximum eigenvalue from Eq. (24) one
finds that the remaining sum over k is a realization of a normal random variable
with zero mean and the variance

72 =69 [ h\>
2 4—d
Sn ~ 27371-6 (ﬁ) n s

as n — oo.
On substitution of the saddle point 2, = A(1;1,...,1) + C*n~%2 in Eq. (27) we
find that the thermodynamic variance of the normalized sums (33) is given by

1
oS 1 Wl_ ywle
w2 e, 1| Bnd/? B) 2B
as n — oQ.

Summarizing the above we obtain the following expression for the magneti-
zation:

2 ; W(l) d -
my, = sgn [P, ;\/(1 - ﬁ—) Wy (d) + 0272, +

B Bed
/4 3 3.\ w(a)
+7Nn 07 _ 1 — Fey Zd \7/ , 34
loa,..nl 7T25\/< I} ) 28.J (34)

where ¢, is a realization of a zero-mean normal random variable with the variance

27772—69 h 2
376 2J )’

and N, (0,v?) is a zero-mean thermodynamic normal random variable with vari-

ance v2. Thus, in the absence of the boundary field, the magnetization of the

1 2
spherical model is conditionally self-averaging with the exponents p = 377 and

T=-

1

8. DISCUSSION AND CONCLUDING REMARKS

It was shown in the paper [3] that there are problems with almost sure con-
vergence of Gibbs states for the random-field Curie-Weiss model in the infinite-
volume limit. In fact, below the critical temperature, the limits of thermodynamic
averages (s;)n do not exist, almost surely, as the volume N tends to infinity. A
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possible solution of the convergence problem was also proposed: it is necessary
to consider the limits of distributions of (s;), which, after some minor technical
efforts, lead to correctly defined random infinite-volume Gibbs states. The same
problem exists in the spherical model, and, most likely, in such often considered
models as the Ising model and O(n) models. Namely, for b = 0, lim,, o0 (Z;)n
does not exist almost surely, although it exists in distribution. The results of the
present paper show that switching on a homogeneous boundary field rectifies the
problem with almost sure convergence. Namely, for b # 0, lim,, o (x;)y exists
almost surely, which (together with convergence of higher correlation functions)
means that the corresponding limit Gibbs state exists for almost all realizations
of the random field {h;, j € Z?}.

The authors of the paper [1] investigated self-averaging using the ideas of
renormalization group theory. They concluded that there are universality classes
of models within which a particular non-self-averaging thermodynamic observable
has the same distribution in the thermodynamic limit. The results of the present
paper indicate that the conclusion of the paper [1] looks plausible, at least for the
magnetization. Indeed, according to Eq. (34) the magnetization of the spherical

model obtains the values -=m* with probability —, where m* is the spontaneous

magnetization. The magnetization of the Curie-Weiss model and, most likely,
of disordered finite-dimensional Ising models has the same distribution, see [3].
One can also guess that the magnetization of various disordered O(n) models is
uniformly distributed over an n-dimensional sphere. On the other hand, we also
saw that the distribution of the magnetization is highly-sensitive to symmetry-
breaking perturbations. Indeed an arbitrarily weak symmetry-breaking boundary
field restores self-averaging, that is, changes a non-degenerate distribution to a
degenerate one. Although that fact rather goes along with than contrary to the
lines of renormalization group argument.
The susceptibility of the spherical model

2

2
Xn = fn? < % Z z; > - <$ Z xj> = Ant-Var(m,,)

JEVR JEVR

can be easily found from Eqgs. (29) and (34). If b # 0, then (when properly
normalized) the susceptibility is self-averaging

n? (1_ tanh\/(_0>

Xn

47 Vo
while if b = 0 then the susceptibility is not a self-averaging observable
1
o~ Lﬂiﬂl_&) i@ 55
" ean,. | T2 B 28cJ
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The susceptibility of various 3D disordered models was studied intensively
using Monte-Carlo simulations since mid-90s, see, e.g. [13,15]. The histograms
obtained in [13,15] suggest that the distribution of the susceptibility is not normal,
positively skewed, and has heavy tails. The distribution of the susceptibility
given by Eq. (35) has the same properties, and thus, to some extend, explains the
results of Monte-Carlo simulations. It has been suggested in the paper [1] that
the distribution of susceptibility should be the same within universality classes.
Since Eq. (35) is the asymptotics of Eq. (27) at the pole z = Apax it is not
unreasonable to expect the universality of the distribution of x, for a certain
class of models. Although it is tempting to speculate that O(n) models might
belong to the universality class, nevertheless, the results of the present paper do
not indicate neither how wide the universality class is, nor which models possibly
belong to this class.

In conclusion, various disordered models have been intensively studied re-
cently either numerically or using various heuristic approaches like, for in-
stance, the renormalization group. The present paper derives explicitly dis-
tributions of various thermodynamic quantities within a non-trivial disordered
finite-dimensional model — the spherical model in a random field. The author
hopes that the paper is helpful for understanding the conclusions of heuristic
theories, and for interpreting the results of Monte-Carlo simulations.
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