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Ball Solitons in Kinetics of the First Order Magnetic Phase Transition

The theory of magnetic ball solitons (BS), arising as a result of the energy
�uctuations at the spin-�op transition induced by a magnetic ˇeld in antiferromagnets
with uniaxial anisotropy, is presented. Such solitons are possible in a wide range of
amplitudes and energies, including the negative energy relative to an initial condition.
When such an antiferromagnet is in a metastable condition, ball solitons are born
with the greatest probability if the energy of solitons is close to zero. Evolution of
these solitons, at which they develop into macroscopic domains of a new magnetic
phase, is analyzed, thus carrying out full phase reorganization.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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INTRODUCTION

For the last decades there have been published many works, where decisions
of the nonlinear differential equations are devoted to the theoretical analysis of
localized excitation in magnetic ordering systems (see, for example, the review
[1]). The behaviour of magnetizations of sublattices in a crystal is described
generally by a nonlinear equation of the LandauÄLipschitz type. The decisions of
this equation have been found for some solitonic excitations. However, in case
of three-dimensional solitons, usually it is not possible to advance essentially in
analytical consideration of solitonic decisions. Besides, generally the energy of
such solitons is too great to count on an opportunity of their spontaneous creation.

A special situation is with the ˇrst order phase transitions. Near to points
of lability, i. e., of the boundaries of existence of metastability, the energy of
such solitons decreases abnormally and, hence, they can arise spontaneously,
as a result of thermal �uctuations. Moreover, the mathematical problem of their
description becomes essentially simpler. For some speciˇc cases, the phenomeno-
logical vector equation of LandauÄLipschitz can be reduced to the approximated
scalar equation that differs from the usual linear equations describing spin waves
by additional members of decomposition by degrees of some component of mag-
netization vector only.

Magnetic solitons with spherical symmetry (ball solitons, BS), which can
arise in crystals with magnetic ordering during the phase transitions induced
by a magnetic ˇeld, were considered for three cases: the spin-�op transition
in antiferromagnet with a uniaxial anisotropy [2Ä5], the ˇrst order transition
in ferromagnet [6], the ˇrst order transition in antiferromagnet with a weak
ferromagnetism of the hematite type [7].

In the ˇrst and second cases of phase transitions, in addition to the amplitude
the solitons have the second parameter: the precession frequency. Therefore, in
these cases each value of an external ˇeld relates to soliton conditions that occupy
some range on energy. It was supposed that such BS could play an essential role
in kinetics of the ˇrst order magnetic phase transitions.

However, the results of the [2Ä5] articles are correct only at small amplitudes
of solitons arising at spin-�op transition. In the given paper, a more complete
BS analysis concerning the solitons with any parameters is presented, beginning
from solitons of the minimum amplitude and up to macroscopic domains of a
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new phase. The character of their further evolution relayed to the dissipation of
energy is considered.

MAIN CHARACTERISTICS OF BALL SOLITONS

To analyze magnetic solitons in an antiferromagnet with uniaxial anisotropy,
we used the following expression for the macroscopic energy (as in [5]):

W = 2M0

∫ {
B

2
|m |2 +

C

2
(lm)2 +

K1

2
|l⊥|2 − K2

4
|l⊥|4 − mzH+

+
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2

[(
∂ l
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)2
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(

∂ l
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)2
]
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2

(
∂ l
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}

dXdY dZ. (1)

Here K1 > 0, K2 > 0; magnetic ˇeld H is directed along the anisotropy axis
Z; m and l are non-dimensional ferromagnetism and antiferromagnetism vectors;
l⊥ = lx + ily, m⊥ = mx + imy; we neglect the gradients of the m vector; the
absolute value of the vector l at H = 0 equals to 1, M0 is the magnetization of
each sublattice. The equations of motion with dissipative terms (in the Gilbert
form) for the l and m vectors, taking into account the energy dissipation, are

M0�

μB
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The solutions of Eqs. (2), (3) have the form

l⊥ (r, τ ) = q (r, τ ) ei(ωτ−κx), (4)

m⊥ (r, τ ) = p (r, τ ) ei(ωτ−κx), (5)

for the simplicity it is supposed that the excitations advance along the x-axis.
Therefore, from (2) Ä (5) we have the following system of equations:
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− k−0.5
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In (6)Ä(10), the differentiation is carried out with respect to the dimensionless
time τ = 2μB (K1B)0.5

�
−1t and dimensionless coordinates x = K0.5

1 α−0.5X ,
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1 �

−1.
The relaxation time of ferromagnetic moment is less for some orders than

the time of the relaxation for an antiferromagnetic vector. Therefore, for mz

component at lz �= 0 we use its quasi-equilibrium value, which can be obtained

from
δW

δmz
= 0 equation:

mz
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1
B + Cl2z

[
Hz − C

2
lz (l⊥m∗

⊥ + l∗⊥m⊥)
]
∼=
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where δ = B/(C + B) = χ‖
/
χ⊥ is the ratio of magnetic susceptibilies.

Further, we divide the processes connected with solitons into two stages,
which can be considered independently to some extent. First of them is the birth
of soliton as a result of �uctuation of the energy, the second one is the further
evolution of soliton. Such a division is fair if we believe that the lifetime of
soliton is much more, than the time necessary for its formation. Actually, we
divide the system of Eqs. (6)Ä(10) into two subsystems: Eqs. (6) and (8) and
Eqs. (7), (9) and (10), and then we analyze them consistently. This operation is

possible if the inequalities of the type γ

∣∣∣∣ ∂q

∂τ

∣∣∣∣ << q, γ

∣∣∣∣∂lz
∂τ

∣∣∣∣ << lz are carried

out.
Thus, at ˇrst we consider a case of solitons without their change because of

the motion and without taking into account the energy dissipation, i. e., from the

(6)Ä(10) system only Eqs. (6) and (8), without the parts containing
∂q

∂τ
,

∂p

∂τ
and

∂lz
∂τ

, are used. Taking into consideration k1<< 1, k2q
2 << 1 ,

(
q2 + l2z

) ∼= 1
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in Eq. (8) and that for long-wave oscillations k1Δq << q, k1Δlz << lz, we
obtain from (8) and (11) the following dependence:

p ∼= −
√

k1 (ω + h) qlz+
δ
√

k1q

lz

(
h − (ω + h) q2

)
−k1

√
k1 (ω + h) lzq

3κ2. (12)

Substituting (12) into (6), we obtain the equation

Δq − q

lz
Δlz =

[
1 − (ω + h)2 +
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l2z
+ κ2

]
q−

−
[

k2

k1
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l2z
+ k1 (ω + h)2 κ2

]
q3. (13)

The decision q = p ≡ 0, mz =
B

(B + C) l2z
∼=

B

B + C
of Eqs. (6)Ä(11) corre-

sponds to the low-ˇeld equilibrium state of a crystal.
Particular cases of the (6)Ä(10) system describe different excitations of the

magnetic system:
a) At Δq = 0, Δlz = 0 we obtain a quasi-homogeneous state, and at a small

q (q → 0) the corresponding equation (ω + h)2 − δ (ω + h)h − 1 = 0 connects
the precession frequencies and the ˇeld value at an antiferromagnetic resonance
(at δ = 0: ω1 = (1 − h) and ω2 = − (1 + h)).

b) At a small q = const, we have a usual spin wave.
It is possible to obtain decisions of Eq. (13), that correspond to spatial-

localized excitations:
c) Quasi-one-dimensional soliton, when the q value changes only along one

direction; considering time dependence in the equations it is possible to receive
expressions for moving quasi-one-dimensional soliton.

d) Solitons with a cylindrical symmetry.
e) Solitons with a spherical symmetry (ball solitons, BS).
In the given paper, the BS decisions are considered only. For such solitons

Eq. (13) can be writted in the form

d2q

dr2
+

2
r

dq

dr
+

q

1 − q2

(
dq

dr

)2

=
[
1 − (ω + h)2 + κ2 + δ (ω + h)h

]
q−

−
[
1 − (ω + h)2 + κ2 +

k2

k1
+ δ (ω + h)2

]
q3 +

[
k2

k1
+ k1 (ω + h)2 κ2

]
q5.

(14)

The BS conˇgurations, that are localized decisions of Eq. (14), for several ω
values at h = 0.99 are shown in Fig. 1. The dependences of BS energy (using
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Fig. 1. The BS conˇgurations if h = 0.99, K1 = 700 Oe, K2 = 140 Oe, κ = 0, δ = 0,
are for the following values of ω: 1 Å +0.0095; 2 Å +0.0075; 3 Å +0.005; 4 Å 0;
5 Å −0.0075; 6 Å −0.0114; 7 Å −0.0025; 8 Å −0.003

Fig. 2. Dependences of the BS energy and amplitude on the precession frequency if
B = 4.9 · 106 Oe, K1 = 700 Oe [8], K2 = 140 Oe, M0 = 0.33 · 10−6 meV · Oe−1 ×
	A−3, α = 3 · 106 Oe · 	A2 for the following values of h: 1 Å 0.99; 2 Å 0.997; 3 Å 1;
4 Å 1.001; 5 Å 1.003 (δ = 0, κ = 0). Dotted curves with the same symbols show the
amplitudes qm of these solitons. In the upper scale, the frequency values are shown for
Cr2O3 case
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formula (1)) and its amplitude qm ≡ q (r = 0) on the precession frequency for
some values of the ˇeld have been shown in Fig. 2.

Precession of the magnetic moments is the reason for existence of solitonic
conditions and their relative stability in a wide range of amplitudes, from zero up
to unit, and energy, including the negative values of energy relative to the initial
condition. If there was no precession, there would be only one solitonic decision
of the equations, at ω = 0. As is seen from Fig. 2, at h > 1 the BS are possible
too. Mechanical analogue of the ball precessing solitons is a rotating children's
top.

For Cr2O3 and the majority of other substances close by their properties to
antiferromagnets with uniaxial anisotropy, absolute values of the BS energy, in a
wide range of precession frequency, considerably exceed the value kBT for the
temperatures corresponding to the magnetic ordering of crystals. Therefore, the
probability of spontaneous origin of such solitons is extremely small. Only BS
with a small energy, i. e., on the area in Fig. 2, where Es (ω) curves pass through
the zero value, are of interest for kinetics of the phase transition.

BS AS NEW STRUCTURES ARISING IN THE BIFURCATION POINTS

In Fig. 3 the fragment of the E (ω) and qm (ω) dependences from Fig. 2 is
presented at h = 0.99. Parameters of a soliton in the b-point are as follows:
Es = 0, ω ∼= −0.01126, qm = 0.986377. In other words, in this point the BS
activation energy equals to zero relative to the low-ˇeld state of the crystal, but
the amplitude bm is close to the q = 1 value for the high-ˇeld phase (for the
initial, low-ˇeld phase: q = 0). Correlation between the low-ˇeld phase and the
solitonic states has been shown schematically in Fig. 4. A segment of horizontal
line at E = 0, h � 1 corresponds to the low-ˇeld phase (if δ = 0). At h < heq,
where h2

eq = 1 − K2/2K1, this state is equilibrium, but at h > heq it becomes
metastable. In turn, for each value of a magnetic ˇeld in the heq < h < 1 range,
we have a continuous spectrum of solitonic states differing by their amplitude,
frequency of precession and energy. These states have been represented by several
segments of vertical lines. Inclined dotted line at h < heq limits the energy values
of BS states. In the range heq < h < 1 the lines of BS states cross a line of the
low-ˇeld phase, i. e., in this range at each value of the ˇeld we have a point of
bifurcation, in which transition of the system to solitonic states is possible.

Let us notice that the BS states exist at small (h − 1) > 0 values too, i. e.,
when the initial phase state is not stable absolutely. Hence, creation of BS's
is possible at disintegration of the initial phase, when the system is absolutely
unstable. Besides, in some range of values of a magnetic ˇeld the energy of such
BS can be positive. It is visible in Fig. 2, for example, that at h = 1.001 the
creation of solitons, having zero energy, is possible with two various frequencies
of precession.
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Fig. 3. Fragment of Fig. 2 for h = 0.99. Horizontal line at E = 0 corresponds to the
energy E0 = 0 of the low-ˇeld phase (it does not depend on ω value); Es (ω) curve is
the BS energy at h = 0.99; qm (ω) curve is corresponding amplitudes of solitons

Fig. 4. Schematic representation of a correlation between the low-ˇeld state (the horizontal
piece E = 0 at h � 1) and solitonic conditions (vertical pieces of lines). In the range
heq < h < 1 we have the bifurcation points, close to which BS may origin
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Probability of the spontaneous creation of BS is related to the �uctuations
of energy (and their conˇguration) at non-zero temperatures and is proportional
to probability of these �uctuations. Probability of �uctuation in the equilibrium
state of a system is expressed by Einstein formula

Pfl ≈ exp
(

ΔS

kB

)
, (15)

where ΔS < 0 is the entropy change corresponding to the �uctuation. Applicabili-
ty of this expression for �uctuations in non-equilibrium states has been postulated
by I. Prigogine (see, for example, [9]) and strictly proved in [10]. Applying this
expression for �uctuations in metastable state (heq < h < 1) of our magnetic
system, i. e., around the bifurcation points, we can use the following expression
for the probability of BS creation with the Es energy:

Ps = A1 exp
(
−Es

kBT

)
. (16)

Here A1 is the conˇguration coefˇcient in general depending on ω, Es and
conˇguration of a soliton. Generally, we have to use differing conˇguration
coefˇcients for positive and negative energy of BS: A1+ for Es > 0 and A1−
for Es < 0. However, it can be assumed that close to the zero value of energy:
A1− ∼= A1+ = A1. Apparently, A1+, A1− << 1.

In our case, formula (16) describes, ˇrst of all, the probability of appearance
of precessing solitons with the speciˇed energy. According to [10], formula (15)

Fig. 5. Approximate dependence of probability of spontaneous BS creation on the energy
near the point of bifurcation
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can be used for probabilities in non-equilibrium conditions only under certain
conditions, the feasibility of which in our case is provided that spontaneous
appearance of BS does not lead to essential change of the low-ˇeld phase state
since the BS volume is much less than the volume of a crystal, and the time,
which is spent for its creation, is much less than the lifetime of solitons. At
the same time, considering insigniˇcant quantity of solitons, their small sizes in
comparison with the volume of a crystal and slow evolution of solitons, it is
possible to suppose, that formula (16) represents the distribution of solitons on
the energy in quasi-equilibrium condition existing in an initial stage of phase
reorganization. Exponential dependence of Ps on the BS energy has been shown
in Fig. 5.

TIME EVOLUTION OF SOLITONS AND THE CHANGE OF THEIR
FORM DURING THE MOVEMENT

At ˇrst, we consider the change of soliton because of the energy dissipation.
Let us assume that BS of the q (r, 0) form corresponding to Eq. (14) has arisen.
The dissipation of energy leads to the subsequent change of a BS conˇguration,
in accordance with equations (9), (11) and (12) (at κ = 0, γ �= 0; we suppose in
(9) that mz << lz):

∂q

∂τ
∼= −k1γω (ω + h) q

(
1 − q2

)
. (17)

The value
ts ∼=

1
γk1ω (ω + h)

�

2μB

√
K1B

(18)

can be accepted as the evolution parameter of solitons, caused by the precession
and energy dissipation. In Fig. 6 dependences of the ω−1 (ω + h)−1 value and
evolution parameter ts on the precession frequency are shown. The ts values

Fig. 6. Dependence of the ω−1(ω + h)−1 value and evolution parameter ts on ω value at
h ∼= 1, γ = 0.02 [8], K1 = 700 Oe, B = 4.9 · 106 Oe
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corresponding to Cr2O3 are given in the right scale. According to (17), the
character of BS change is determined by a sign of the precession frequency. At
ω > 0 the solitons decrease and disappear, but at ω < 0 they grow and turn to
the macroscopic domains of the high-ˇeld phase.

If h < heq, the BS states also exist, but the probability of creation of such
solitons is extremely small (see Fig. 4). Besides, for these BS the frequency
ω > 0 and ts > 0, therefore, they fade and disappear. If h > heq, the parameter
of evolution is positive too above the dotted line, but below this line it is negative,
i. e., only these solitons (at ts < 0) grow and turn to domains of the high-ˇeld
phase.

For sufˇciently small time values we have the following correlation (it follows
from (17)):

dq

q (1 − q2)
∼= −k1γω (ω + h) dτ. (19)

Integrating the (19) correlation, we obtain

q (r, τ ) =
q (r, 0) exp (−τ/τs)√

(1 − q2 (r, 0)) + q2 (r, 0) exp (−2τ/τs)
=

=
q (r, 0) exp (−t/ts)√

(1 − q2 (r, 0)) + q2 (r, 0) exp (−2t/ts)
, (20)

where τs
∼= [γk1ω (ω + h)]−1.

Fig. 7. Time change of the initial BS through Δt = 30 μs time intervals. Here h = 0.99,
ω = −0.01126, γ = 0.02, K1 = 700 Oe, Es(t = 0) = 1.325 meV, ts = −30.8 μs
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Fig. 8. Time change of the initial BS for the following time: 1 Å 0; 2 Å 200; 3 Å
400; 4 Å 700 μs. Here h = 0.997, ω = 0.001, γ = 0.02, K1 = 700 Oe, Es(t = 0) =
1113 meV, ts = 350 μs

Certainly, the (20) dependence can be used only at sufˇciently small time
values. This formula expresses only the tendency, direction for transformation of
BS with ω < 0 in macroscopic domain of the high-ˇeld phase and for disappear-
ance of BS with ω > 0. In Figs. 7 and 8 the time changes of two BS are shown
(it can be noted that at least in Cr2O3 the spontaneous birth of BS with ω > 0 is
practically impossible).

As has been noted above, at the BS spontaneous birth a change of the entropy
ΔS < 0. At the subsequent evolution of a soliton due to dissipation the entropy
is increasing. For BS with ω < 0 the equilibrium state is the high-ˇeld phase.

Now, we consider the in�uence of movement of a soliton on its form. Using
the (9), (11) and (12) expressions for γ = 0, δ = 0, we obtain the following
expression:

∂q

∂τ
= 2k1 (ω + h)κq2 ∂q

∂x
. (21)

Let us present the q (x, y, z, τ) function as q (x, y, z, τ) = qs (xs, y, z, τ), where
xs = (x − v0τ ). In such a case we have

−v0
∂qs

∂xs
+

∂qs

∂τ
= 2k1 (ω + h)κ

∂qs

∂xs
− 2k1 (ω + h)κ

(
1 − q2

) ∂qs

∂xs
. (22)
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One can suppose that

v0 = −2k1 (ω + h)κ (23)

is the velocity of movement of a soliton as a whole. Then, the expression
∂qs

∂τ
= −2k1 (ω + h)κ

(
1 − q2

) ∂qs

∂xs
or, in spherical coordinates,

∂qs

∂τ
= v0

(
1 − q2

) ∂qs

∂rs
sin θcosϕ (24)

(here rs is the radial coordinate in the system of moving soliton) describes the
deformation of a soliton because of its movement along the x-axis. For our BS,
∂qs

∂r
< 0. Consequently, the BS frontal side is decreasing, i. e., it becomes steeper

at the movement of soliton, but the back side becomes sloper in the same extent.
The BS, energy does not change during its movement.

CREATION OF LAYER-LIKE BS AND LAYER-BALL DOMAINS

In addition to the considered BS, ®simple¯ solitons, there are other decisions
of Eq. (14) (of the ®matreshka¯ type). For comparison, in Fig. 9 the conˇgurations
of the ˇrst three BS are shown for h = 0.999, ω = 0. Each change of the sign

Fig. 9. Conˇgurations of the ®simple¯ (n = 1), ®double¯ (n = 2) and ®triple¯ (n = 3)
solitons for h = 0.999, ω = 0
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of q corresponds to the 180◦ change of the precession phase. The energies and
amplitudes of the ®simple¯, ®double¯ and ®triple¯ solitons vs ω are shown in
Fig. 10.

Fig. 10. Dependences of energies and amplitudes (latter ones are shown by dotted curves)
in ω for ®simple¯ (1), ®double¯ (2) and ®triple¯ (3) solitons at h = 0.999

As is seen from Fig. 10, the energy curves of these BS intersect the E = 0
line too. For probabilities of the ®double¯ and ®triple¯ solitons we can use the
expressions similar to (16):

P dbl
s = A2exp

(
−Edbl

s

kBT

)
, (25)

P trpl
s = A3exp

(
−Etrpl

s

kBT

)
. (26)

The An (n = 1, 2, 3, ...) coefˇcients depend on the form of solitons and are
a measure of complexity of their conˇguration. There are reasons to believe that
A3 < A2 < A1 << 1.

It is interesting to see the evolution of such solitons. The change of ®double¯
and ®triple¯ solitons are shown for h = 0.999 in Figs. 11 and 12.

From ®double¯ BS the ball antiferromagnetic domain is formed with the
radius of R ∼= 15α0.5K−0.5

1
∼= 1000 	A, in which the antiferromagnetic vector is

directed opposite to the antiferromagnetic vector of the basic volume of a crystal
(in the real space this domain has a form of ellipsoid of rotation).

In the case of ®triple¯ BS the ball antiferromagnetic domain with the radius
of R ∼= 1000 	A is surrounded by an envelope about 1000 	A of thickness, and
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Fig. 11. Evolution of ®double¯ soliton for h = 0.999, ω = −0.0062 (in this case Edbl
s (t =

0) = 73.3 meV, ts = −55.54 μs). Values of t are as follows: 1 Å 0; 2 Å 60; 3 Å 120;
4 Å 180; 5 Å 240; 6 Å 300 μs

Fig. 12. Evolution of ®triple¯ soliton for h = 0.999, ω = −0.00548 (in this case Edbl
s (t =

0) = −51.9 meV, ts = −62.76 μs). Values of t are as follows: 1 Å 0; 2 Å 60; 3 Å 180;
4 Å 300; 5 Å 450; 6 Å 600 μs
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all that is in the great bulk of high-ˇeld antiferromagnetic state of a crystal.
Accordingly, the signs of antiferromagnetic vectors alternate two times.

CONCLUSIONS

1. When an antiferromagnet at the spin-�op transition is in the metastable state,
to each value of a magnetic ˇeld there corresponds a continuous spectrum
of BS states, differing by the precession frequency and energy. These
states include a wide range by amplitude, from zero up to the maximal
value, equal to unit, and by energy, including negative values.

2. The BS probability increases anomalously when the energy is close to zero
(relative to the energy of the initial low-ˇeld phase).

3. Character of the BS evolution depends on the sign of precession frequency.
If ω > 0, the solitons decrease by amplitude and disappear. If ω < 0,
BS grow continuously and become macroscopic domains of the high-ˇeld
phase. If one excludes the in�uence of the ®parasitic¯ centers on the
process of the ˇrst order phase transition (such as clusters of impurity,
domain walls, dislocations, boundaries with other environment), kinetics of
the phase reorganization will be determined by the creation and evolution
of BS. So, a new mechanism of the phase reorganization at the ˇrst order
transition has been presented.

4. The creation of a more complex BS, the so-called ®double¯ and ®triple¯
solitons, is possible. The evolution of these solitons leads to the formation
of ®double¯ and ®triple¯ magnetic domains with the symmetry of ellipsoid
of rotation, correspondingly.
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