
E5-2007-72

P. E. Zhidkov∗

ON THE EXISTENCE OF A COMPONENT-WISE
POSITIVE RADIALLY SYMMETRIC SOLUTION
FOR A SUPERLINEAR SYSTEM

Submitted to ®Electronic Journal of Differential Equations¯

∗E-mail: zhidkov@thsun1.jinr.ru



†¨¤±μ¢ �. …. E5-2007-72
� ¸ÊÐ¥¸É¢μ¢ ´¨¨ ¶μ±μ³¶μ´¥´É´μ-¶μ²μ¦¨É¥²Ó´μ£μ
· ¤¨ ²Ó´μ-¸¨³³¥É·¨Î´μ£μ ·¥Ï¥´¨Ö
¤²Ö ´¥±μÉμ·μ° ¸Ê¶¥·²¨´¥°´μ° ¸¨¸É¥³Ò

� ¸¸³ É·¨¢ ¥É¸Ö ¸¨¸É¥³ 
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u
∣∣
|x|→∞ = v
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On the Existence of a Component-Wise Positive
Radially Symmetric Solution for a Superlinear System

The system under consideration is

−Δu + auu = u3 − βuv2, u = u(x),

−Δv + avv = v3 − βu2v, v = v(x), x ∈ R
3,

u
∣∣
|x|→∞ = v

∣∣
|x|→∞ = 0,

where au, av and β are positive constants. We prove the existence of a component-
wise positive smooth radially symmetric solution of this system. This statement is
one of the results presented in the recent paper [1]; in our opinion, our method
allows one to treat the problem simpler and shorter.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION. RESULT

We consider the problem

−Δu + auu = u3 − βuv2, u = u(x), (1)

−Δv + avv = v3 − βu2v, v = v(x), x ∈ R
3, (2)

u
∣∣
|x|→∞ = v

∣∣∣
|x|→∞

= 0 (3)

in the spatial dimension 3, where all the quantities are real, au, av and β are

positive constants and Δ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is the Laplace operator. Our aim

is to prove the existence of a pair of functions (u, v) ∈ C2(R3)×C2(R3) satis-
fying (1)Ä(3), radially symmetric and component-wise positive in R

3. Of course,
(1)Ä(3) is a model problem which naturally arises when one considers standing
waves for a coupled system of nonlinear Schréodinger equations and which has
various applications in different areas of physics, for instance, in the heat and
diffusion theory, in the theory of nonlinear waves, for example, in plasma or in
water, etc. The author's interest to this problem was mainly stimulated by the
quite recent article [1], on the one hand, and by his publication [2], on the other
hand. In fact, with the present work we improve the results in [2], where it is
assumed that β ∈ (0, 1], and obtain a result similar to one of those in [1] by
another method in a simpler and shorter way; in fact, we proceed as in [2]. Here,
our main result is the following.

Theorem. Let au, av and β be positive constants. Then, problem (1)Ä(3) has
a C2-solution radially symmetric and component-wise positive in R

3.

Remark 1. Of course, if β ∈ (0, 1) and au = av, then the problem has a
solution (u, v) satisfying u ≡ v (see, for example, [3]). However, it seems to
be surprising that the solution in the theorem above exists if β � 1. A similar
statement was already presented in [1].
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Now, we introduce some notation. Let H1 = H1(0,∞) be the standard
Sobolev space of functions deˇned in (0,∞) and equal to 0 at the point 0, with the

norm ‖w‖2 =
∞∫
0

[w2(r) + (w′(r))2]dr and let ‖w‖2
u =

∞∫
0

[auw2(r) + (w′(r))2]dr

and ‖w‖2
v =

∞∫
0

[avw
2(r) + (w′(r))2]dr be the equivalent norms in this space.

Denote X = H1 × H1 and, for (y, z) ∈ X ,

s = s(y, z) = β

∞∫
0

y2(r)z2(r)
r2

dr,

p = p(y) =

∞∫
0

y4(r)
r2

dr

and

q = q(z) =

∞∫
0

z4(r)
r2

dr.

2. PROOF OF THE THEOREM

In the class of radially symmetric solutions, system (1)Ä(3) reduces to the
following:

u′′ +
2
r
u′ = auu − u3 + βuv2, r = |x| > 0, u = u(r), (4)

v′′ +
2
r
v′ = avv − v3 + βu2v, v = v(r), (5)

u′(0) = v′(0) = u(+∞) = v(+∞) = 0, (6)

where the prime denotes the differentiation in r. By the substitution y(r) =
ru(r), z(r) = rv(r) we also reduce problem (4)Ä(6) to the following:

y′′ = auy + βy
z2

r2
− y3

r2
, y = y(r), (7)

z′′ = avz + β
y2

r2
z − z3

r2
, z = z(r), r > 0, (8)

y(0) = z(0) = y(+∞) = z(+∞) = 0. (9)
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System (7)Ä(9) is variational, and X-extremals of the functional

H = H(y, z) =
1
2
‖y‖2

u +
1
2
‖z‖2

v +
1
2
s(y, z) − 1

4
p(y) − 1

4
q(z)

are formally its solutions. In view of estimate (15) and the proof of Lemma 2
(see below), it is determined in X . In the following, we exploit a variant of the
method of S. I. Pokhozhaev described, for example, in [3]. Let S = {(y, z) ∈
X : ‖y‖2

u = 1 and ‖z‖2
v = 1}. Consider an arbitrary (y0, z0) ∈ S, a, b > 0 and

a point (y, z) = (ay0, bz0). For this point (y, z) to be an X-extremal of H , it is

necessary that
∂H(y, z)

∂a
=

∂H(y, z)
∂b

= 0. This easily yields the following two

conditions for X-extremals of H :

‖y‖2
u + s(y, z) = p(y), (10)

‖v‖2
v + s(y, z) = q(z). (11)

Lemma 1. Let (y0, z0) ∈ S. Then, a point (y, z) = (ay0, bz0), where
a, b > 0, satisfying (10) and (11) exists if and only if p0q0 − s2

0 > 0, where
p0 = p(y0), q0 = q(z0) and s0 = s(y0, z0).

Proof. Substitute (y, z) = (ay0, bz0) in (10) and (11). Then, we obtain the
system

1 + s0b
2 = p0a

2, 1 + s0a
2 = q0b

2, (12)

with the unknown quantities a and b. It is easily seen that (12) has a real solution
(a, b), where a, b > 0, if and only if p0q0 − s2

0 > 0, and this solution is given by

a2 =
q0 + s0

p0q0 − s2
0

and b2 =
p0 + s0

p0q0 − s2
0

. (13)

Lemma 1 is proved.�

Consider the set

S0 = {(y0, z0) ∈ S : p(y0) · q(z0) − s2(y0, z0) > 0}

and denote T = {(ay0, bz0) : a, b > 0 are given by (13) and (y0, z0) ∈ S0}. By
(10) and (11)

H =
1
4
[‖u‖2

u + ‖v‖2
v] > 0 on T (14)

so that the functional H is bounded from below on T .

Lemma 2. The functionals p, q and s are weakly continuous in X .
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Proof. Let a sequence {(yn, zn)}n=1,2,3,... be weakly converging in X .
Then, it is bounded in X and, consequently, in C(0,∞) × C(0,∞). We have
the estimate

|yn(r1) − yn(r2)| =

∣∣∣∣∣∣
r2∫

r1

y′
n(r)dr

∣∣∣∣∣∣ �
r2∫

r1

|y′
n(r)|dr � |r1 − r2|1/2 · ‖yn‖ (15)

(and by analogy for z) which shows that for any ε > 0 there exists δ > 0 such
that

δ∫
0

y4
n(r)
r2

dr < ε, β

δ∫
0

y2
n(r)z2

n(r)
r2

dr < ε and

δ∫
0

z4
n(r)
r2

dr < ε.

In addition,

∞∫
R

y4
n(r)
r2

dr � C

∞∫
R

dr

r2
= CR−1 → +0 as R → +∞

and by analogy for s and q. These estimates complete our proof of Lemma 2.�

Remark 2. Using estimates of the type of estimate (15), one can easily prove
that the functional H = H(y, z) in X is continuously differentiable in each of its
arguments when the other one is ˇxed.

Let {(yn, zn)}n=1,2,3,... be an arbitrary minimizing sequence for the func-
tional H on T . By (14), it is bounded in X and therefore, weakly compact.
Without the loss of generality we accept that it is weakly converging in X to a
point (y, z), and that there exist limits of ‖yn‖u and ‖zn‖v as n → ∞.

Lemma 3. There exists c > 0 such that ‖yn‖ � c and ‖zn‖ � c for all n.

Proof. Consider an arbitrary (y0, z0) ∈ S0, the corresponding (y, z) =
(ay0, bz0) ∈ T , where a, b > 0, and the condition

‖y1‖2
u =

∞∫
0

y4
1(r)
r2

dr,

where y1 = a1y, a1 > 0. By (15),

∞∫
0

y4
1(r)
r2

dr � C1‖y1‖4
u
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for a constant C1 > 0. This immediately implies that there exists c1 > 0 such
that a1 � c1 for any (y0, z0) ∈ S0. Observe now that a � a1. To estimate b, one
can proceed by analogy.�

By Lemma 2, y �= 0 and z �= 0 in H1.

Lemma 4. The sequence {(yn, zn)} converges to (y, z) strongly in X .

Proof. First of all, by Lemmas 2 and 3, (10), (11), (13) and (14), one has:

p

(
yn

‖yn‖u

)
· q

(
zn

‖zn‖v

)
− s2

(
yn

‖yn‖u
,

zn

‖zn‖v

)
=

=
1

‖yn‖4
u · ‖zn‖4

v

[p(yn) · q(zn) − s2(yn, zn)] � c0 > 0 (16)

for a constant c0 > 0 independent of n. By (16) and Lemma 2,

p

(
y

‖y‖u

)
· q

(
z

‖z‖v

)
− s2

(
y

‖y‖u
,

z

‖z‖v

)
=

=
1

‖y‖4
u · ‖z‖4

v

[p(y) · q(z) − s2(y, z)] > 0. (17)

Therefore, according to Lemma 1, there exist a, b > 0 such that

(
a

y

‖y‖u
,

b
z

‖z‖v

)
∈ T.

Suppose that the statement of our Lemma is wrong. Then, simple calculations

similar to those performed to obtain (13) show that
a

‖y‖u
� 1 and

b

‖z‖v
� 1 and,

in addition, at least one of these two inequalities is strict. Therefore,

H

(
a

‖y‖u
y,

b

‖z‖v

z

)
<

1
4
[|y‖2

u + ‖z‖2
v] < lim inf

n→∞
H(yn, zn) = inf

(y,z)∈T
H(y, z),

which is a contradiction. So, Lemma 4 is proved.�

By Lemma 4, (y, z) ∈ T is a point of minimum of the functional H on the
set T . According to Lemmas 1 and 4 and (17), in S, there exists a neighborhood

of the point

(
y

‖y‖u
,

z

‖z‖v

)
belonging to S0. Therefore, since the pair (a, b) is

a smooth function of (y0, z0) ∈ S0, according to the Pokhozhaev theorem (see,
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for example, theorem II.2.2 in [3]) y is a critical point of the functional H(y, z)
taken with the ˇxed second argument, and z is a critical point of the functional
H(y, z) taken with the ˇxed ˇrst argument. Therefore, by standard arguments,
the pair (y, z) belongs to (C2(0,∞)×C2(0,∞))∩ (C([0,∞))×C([0,∞))), and
it is a solution of problem (7)-(9).

Lemma 5. One has y(r) �= 0 and z(r) �= 0 in (0,∞).

Proof. First, we observe that it cannot be that y(r0) = y′(r0) = 0 at some
r0 ∈ (0,∞) because otherwise y(r) ≡ 0 by the uniqueness theorem (and by anal-
ogy for z). Further, suppose that the function y changes sign at some r0 ∈ (0,∞).
Observe that the pair (|y|, |z|) is still a point of minimum of H on the set T ,
hence, a smooth solution of problem (7)Ä(9). But by our supposition, the func-
tion |y|′ is discontinuous at r0. This contradiction completes our proof (for the
function z one can proceed by the complete analogy).�

Now, we can accept that y(r) > 0 and z(r) > 0 for all r > 0. As is well
known, there exist C > 0 and κ > 0 such that |y(r)| + |z(r)| � Ce−κr for all
r � 1. Then, it is a component-wise positive smooth solution of problem (7)Ä(9).
According to (15) and equations (7) and (8), one has: |y′′(r)| + |z′′(r)| � Cr1/2

for all r ∈ (0, 1]. Therefore, there exist limits y′(+0) = y′(1) −
1∫
0

y′′(r)dr

and z′(+0) = z′(1) −
1∫
0

z′′(r)dr. Let (u(r), v(r)) =
1
r
(y(r), z(r)). Then, we

have (u(+0), v(+0)) = (y′(+0), z′(+0)) so that the functions u and v are con-
tinuous and bounded in (0,∞) and u(+∞) = v(+∞) = 0. Now, it can be
proved completely as in [3] (see the proof of theorem II.2.1 in [3]) that the pair
(u(|x|), v(|x|)) is a smooth solution of system (1)Ä(3). So, our theorem is proved.
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