
E5-2007-73

P. E. Zhidkov∗

EXISTENCE OF POSITIVE RADIAL SOLUTIONS
FOR SOME NONVARIATIONAL SUPERLINEAR
ELLIPTIC SYSTEMS

Submitted to ®Annales Henri Poincar�e¯

∗E-mail: zhidkov@thsun1.jinr.ru



†¨¤±μ¢ �. …. E5-2007-73
‘ÊÐ¥¸É¢μ¢ ´¨¥ ¶μ²μ¦¨É¥²Ó´ÒÌ · ¤¨ ²Ó´ÒÌ ·¥Ï¥´¨°
¤²Ö ´¥±μÉμ·ÒÌ ´¥¢ ·¨ Í¨μ´´ÒÌ ¸Ê¶¥·²¨´¥°´ÒÌ Ô²²¨¶É¨Î¥¸±¨Ì ¸¨¸É¥³

� ¸¸³ É·¨¢ ¥É¸Ö ¸¨¸É¥³ 

−Δu + cu = g(u, v) + up, u = u(x), x ∈ B ⊂ R
N , u

∣∣
∂B

= 0,

−Δv + dv = h(u, v) + vq, v = v(x), v
∣∣
∂B

= 0,

£¤¥ c, d � 0 Å ¶μ¸ÉμÖ´´Ò¥, B Å Ï · ¨ 1 < p, q < p� ¸ p� = (N + 2)/(N − 2),
¥¸²¨ N � 3, ¨ ¸ p� = +∞, ¥¸²¨ N = 1, 2. ‘·¥¤¨ ¶·μÎ¥£μ ¶·¥¤¶μ² £ ¥É¸Ö,
ÎÉμ g(0, v) = h(u, 0) = g′u(0, v) = h′

v(u, 0) = 0 ¨ ÎÉμ g ¨ h Å ´¥Ê¡Ò¢ ÕÐ¨¥
ËÊ´±Í¨¨ ± ¦¤μ£μ ¨§ ¨Ì  ·£Ê³¥´Éμ¢, ¶μ¤Î¨´ÖÕÐ¨¥¸Ö μ¶·¥¤¥²¥´´Ò³ Ê¸²μ¢¨Ö³
·μ¸É  ´  ¡¥¸±μ´¥Î´μ¸É¨. „μ± § ´μ ¸ÊÐ¥¸É¢μ¢ ´¨¥ · ¤¨ ²Ó´μ£μ ·¥Ï¥´¨Ö (u, v),
Ê¤μ¢²¥É¢μ·ÖÕÐ¥£μ Ê¸²μ¢¨Õ u, v > 0 ¢ B.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ É¥μ·¥É¨Î¥¸±μ° Ë¨§¨±¨ ¨³. �.�. �μ£μ²Õ¡μ¢ 
�ˆŸˆ.

�·¥¶·¨´É �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2007

Zhidkov P. E. E5-2007-73
Existence of Positive Radial Solutions
for Some Nonvariational Superlinear Elliptic Systems

The system under consideration is

−Δu + cu = g(u, v) + up, u = u(x), x ∈ B ⊂ R
N , u

∣∣
∂B

= 0,

−Δv + dv = h(u, v) + vq, v = v(x), v
∣∣
∂B

= 0,

where c, d � 0 are constants, B is a ball and 1 < p, q < p� with p� = (N+2)/(N−2)
if N � 3, and p� = +∞ if N = 1, 2. Among others, it is assumed that g(0, v) =
h(u, 0) = g′u(0, v) = h′

v(u, 0) = 0 and that g and h are nondecreasing functions in
each of their arguments obeying certain growth conditions at inˇnity. We prove the
existence of a radial solution (u, v) satisfying u, v > 0 in B.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

We consider the problem

−Δu + cu = ua1vb1 + up, u = u(x),

−Δv + dv = ua2vb2 + vq, v = v(x), x ∈ B ⊂ R
N ,

u
∣∣
∂B

= v
∣∣
∂B

= 0

and its generalizations. Here N is a positive integer, B = {x = (x1, ..., xN ) ∈

R
N : |x| < 1} is a ball, Δ =

∂2

∂x2
1

+...+
∂2

∂x2
N

is the Laplace operator, c, d � 0 are

constants, ai + bi < p = min{p; q}, a1, b2 > 1, a2, b1 � 0 and 1 < p, q <
N + 2
N − 2

for N � 3 (to be interpreted as 1 < p, q < ∞ if N = 1, 2). For this problem, we
prove the existence of a solution (u, v) radial in B (that is, depending only on
r = |x|) and satisfying u(r), v(r) > 0, u′(r) � 0 and v′(r) � 0 for r ∈ (0, 1).

Studies of the scalar superlinear second-order elliptic equations have a long
history and the basic results in this direction are well known; we mention the result
by P.H. Rabinowitz [5] according to which a scalar equation similar to the system
above has a positive solution and, if the nonlinearity is odd, an inˇnite sequence
of pairwise different solutions. We also indicate monograph [7] where some
results on the existence of solutions for scalar equations in the entire space R

N

are reviewed. For systems of similar equations, to our knowledge, in the literature
almost all results on the existence are established for variational problems, i. e., for
systems for which there exist corresponding functionals whose critical points are
solutions of these systems. For nonvariational problems, behavior of solutions
(without proving the existence) is studied in a number of publications. For
an information on this subject, we refer readers to the recent paper [3] and
the references therein. Concerning the existence of solutions for nonvariational
problems, we mention only article [8] where some interesting results in this
direction are presented in a more general case than our one when a domain is
not necessarily a ball and the solutions are not necessarily radial, mainly for
nonlinearities of the type aup + bvq and also up − uavb + vq . In both cases
positive a, b, p and q satisfy additional restrictions (for example, for N = 3 it is
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assumed that q > 1, 1 < p < 5 in the ˇrst equation and p > 1, 1 < q < 5 in the
second one).

In the present paper, we consider another system which naturally arises as
a system of two scalar superlinear equations coupled by a perturbation function
which is not necessarily small or bounded. As for applications, systems of this
type have a lot of them, in particular, in the heat and diffusion theory, physical
and chemical kinetics, etc. Because the problems of this class seem to be difˇcult,
we deal with one of the simplest ones. It can be considered as a model problem.
When the article was already prepared, its author learned about the result by
W.C. Troy [6] according to which, if (u, v) is an arbitrary solution of our system
and u, v > 0 in B, then u and v are radial functions nonincreasing in r. We
establish independent proofs not based on this statement.

Finishing our introduction, we illustrate some difˇculties of the analysis of
systems one of which we study by the following very simple example. Consider
the system

−Δu = f1(u, v)u, u = u(x), x ∈ Ω, u
∣∣
∂Ω

= 0,

−Δv = f2(u, v)v, v = v(x), v
∣∣
∂Ω

= 0,

where Ω ⊂ R
N is a bounded domain with a smooth boundary. If one assumes

that f1(u, v) �= f2(u, v) for all u, v > 0 (so that either f1(u, v) > f2(u, v) or
f1(u, v) < f2(u, v), for all u, v > 0), then a simple comparison theorem applied
to the ˇrst and second equations in this system shows that it has no solution
(u, v) that satisˇes u, v > 0 in Ω (multiply the ˇrst equation by v, the second
one by u, subtract the results from each other and integrate the obtained relation
over Ω; then, one gets a false equality). For example, if f1(u, v) = 2u2 and
f2(u, v) = u2, then the system above has no component-wise positive solution.

2. PRECISE STATEMENT OF THE PROBLEM. RESULT

In fact, we consider the problem

−Δu + cu = g(u, v) + |u|p−1u, u = u(x), (1)

−Δv + dv = h(u, v) + |v|q−1v, v = v(x), x ∈ B ⊂ R
N , (2)

u
∣∣
∂B

= v
∣∣
∂B

= 0, (3)

where we changed the power terms in the right-hand sides of the equations by
expressions equal to them for u, v � 0 and deˇned for all u, v ∈ R. Here N � 1
is integer and B = {x ∈ R

N : |x| < 1}. Hereafter all quantities we deal with are
real. We consider classical C2(B)∩C(B) solutions of (1)Ä(3). Our assumptions
are the following:
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(h1) c, d are nonnegative constants in B;

(h2) 1 < p, q <
N + 2
N − 2

for N � 3 and 1 < p, q < ∞ if N = 1, 2;

(h3) the functions g, h are locally Héolger continuous in [0,∞) × [0,∞);

(h4) there exists κ = κ(u, v) > 0 such that |g(u, v)| � κ(u, v)(|u|p + |v|p)
and |h(u, v)| � κ(u, v)(|u|p + |v|p) for all u, v � 1, where p = min{p; q} and
κ(u, v) → 0 as |(u, v)| → ∞;

(h5) the functions g and h are nondecreasing in [0,∞) × [0,∞) in each of two
arguments;

(h6) for any A > 0 there exists a function γA(s) → +0 as s → +0 such that
g(u, v) � γA(u)u for all v ∈ [0, A] and all u ∈ (0, 1], and h(u, v) � γA(v)v for
all u ∈ [0, A] and for all v ∈ (0, 1].

In the present paper, our main result is the following.

Theorem. Under assumptions (h1)Ä(h6) there exists a radial solution
(u(r), v(r)) of problem (1)Ä(3) that satisˇes u(r) > 0, v(r) > 0, u′(r) � 0
and v′(r) � 0 for all r ∈ [0, 1).

For brevity, we call solutions as in this theorem positive radial nonincreasing
solutions.

This result admits a natural generalization for systems of n equations, n � 3.
Our method of its proving is mainly based on two ideas. First, we obtain a priori
estimates in C(B) for positive radial nonincreasing solutions of (1)Ä(3). For
this aim, we apply (and partly modernize) the approach by D.G. de Figueiredo,
P. L. Lions and R.D. Nussbaum [2]. In particular, we establish a derivation of
the Pohozaev identity [4] for our system proceeding in the way well known in
physics. Then, to prove the existence of a solution, we apply an abstract result
presented in [1] and based on the concept of the index of a compact operator in
a Banach space.

Everywhere in the following it is accepted that assumptions (h1)Ä(h6) are
valid. We also continue the functions g(s, t) and h(t, s) for negative values of
their arguments being odd in s and even in t.

3. A PRIORI ESTIMATES OF SOLUTIONS

In this and the next sections, we assume in addition to hypotheses (h1)Ä(h6)
that the functions g and h are continuously differentiable. In the class of radial
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solutions, problem (1)Ä(3) reduces to the following:

−u′′ − N − 1
r

u′ + cu = g(u, v) + |u|p−1u, u = u(r), (4)

−v′′ − N − 1
r

v′ + dv = h(u, v) + |v|q−1v, v = v(r), r ∈ (0, 1), (5)

u′(0) = v′(0) = u(1) = v(1) = 0, (6)

where the prime denotes the derivative in r. Denote by Ls(B), s � 1, the

standard Lebesgue space with the norm |w|s =
{∫

B

|w(x)|sdx

}1/s

and by H1
0 (B)

the usual Sobolev space of functions in B equal to zero, a. e. on the boundary

∂B, equipped with the norm ||w|| =
{∫

B

|∇w(x)|2dx

}1/2

; for radial u ∈ Ls(B)

and v ∈ H1
0 (B) one has, respectively: |u|ss =

1∫
0

rN−1|u(r)|sdr and ||v||2 =

1∫
0

rN−1|v′(r)|2dr, where we omit a positive coefˇcient CN depending only on

N . Denote by H1
r the subspace of H1

0 (B) consisting of radial functions. We
identify this space with the space of functions u(r) of r ∈ (0, 1] equal to 0 at
r = 1 with the same norm. Introduce two quantities

I(u, v) =

1∫
0

rN−1

{
1
2
u′2(r) +

c

2
u2(r) − G(u, v) − 1

p + 1
up+1

}
dr

and

J(u, v) =

1∫
0

rN−1

{
1
2
v′

2(r) +
d

2
v2(r) − H(u, v) − 1

q + 1
vq+1

}
dr,

where G(u, v) =
u∫
0

g(s, v)ds and H(u, v) =
v∫
0

h(u, s)ds. As one can easily

verify (and as is well known, see, for example, [7]), for any radial solution
(u0, v0) ∈ C2(B) ∩ C(B) of problem (1)Ä(3) the functional I1(u) = I(u, v0(r))
taken with the ˇxed v0(r) is continuously differentiable in u ∈ H1

r and u0(r)
is its critical point in this space; by analogy, the functional J1(v) = J(u0(r), v)
taken with the ˇxed u0(r) is continuously differentiable in v ∈ H1

r and v0 is its
critical point in this space.
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Now, let us take two functions α, β ∈ C3([0, 1]) satisfying α(l)(0) =
β(l)(0) = 0 for l = 1, 2, 3 and α(l)(1) = β(l)(1) = 0 for l = 0, 1, 2, 3 and
consider the following problem:

−(rN−1(u′ − α′))′ + crN−1(u − α) = rN−1[g(u, v) + up], (7)

−(rN−1(v′ − β′))′ + drN−1(v − β) = rN−1[h(u, v) + vq], (8)

u′(0) = v′(0) = u(1) = v(1) = 0. (9)

As above, the corresponding functionals whose critical points in H1
r are solutions

of (7)Ä(9) are the following:

Iα(u, v) =

1∫
0

rN−1

{
1
2
(u′ − α′)2 +

c

2
(u − α)2 − G(u, v) − 1

p + 1
up+1

}
dr

and

Jβ(u, v) =

1∫
0

rN−1

{
1
2
(v′ − β′)2 +

c

2
(v − β)2 − H(u, v) − 1

q + 1
vq+1

}
dr.

The statement below is a variant and an extension of several results. The ˇrst one
was obtained by S. I. Pohozaev [4]. Here, we apply another method to derive it.

Lemma 1. Let v ∈ C2([0, 1]) and α (resp., u ∈ C2([0, 1]) and β) be ˇxed,
let u ∈ C2([0, 1]) (resp., v ∈ C2([0, 1])) be a critical point of I2(u) = Iα(u, v)
(resp., of J2(v) = Jβ(u, v)) in H1

r and u′(r) � 0 in [0, 1] (resp., v′(r) � 0 in
[0, 1]). Then, the following relations hold:

1∫
0

{
rN−1u′2 + crN−1u2 − crN−1αu + u(rN−1α′)′

}
dr =

=

1∫
0

rN−1
{
ug(u, v) + up+1

}
dr (10)

(respectively,

1∫
0

{
rN−1v′

2 + drN−1v2 − drN−1βv + v(rN−1β′)′
}

dr =

=

1∫
0

rN−1
{
vh(u, v) + vq+1

}
dr)
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and

1∫
0

{
2 − N

2
rN−1u′2 + (rN−1α′)′u − (rNα′)′′u − cN

2
rN−1u2 + c(rNα)′u+

+
N

p + 1
rN−1up+1 − rNg(u, v)u′

}
dr =

1
2
[u′(1)]2 (11)

(respectively,

1∫
0

{
2 − N

2
rN−1v′

2 + (rN−1β′)′v − (rNβ′)′′v − dN

2
rN−1v2 + d(rNβ)′v+

+
N

q + 1
rN−1vq+1 − rNh(u, v)v′

}
dr =

1
2
[v′(1)]2).

Proof. We derive only the ˇrst equalities (10) and (11) because the second
ones can be obtained by analogy. To obtain (10), multiply equation (7) by u and
integrate the result from 0 to 1. To derive (11), continue the function u(r) by 0
for r > 1 and consider a parameter a ∈ [1, 2) and the function w(a, r) = u(ar).
We also introduce C2([0,∞)) approximations uε, where ε > 0 is sufˇciently
small, of u equal to u(r) for r ∈ [0, 1 − ε) ∪ [1,∞), positive, nonincreasing,
satisfying |u′

ε(r)| � 2 max
r∈[0,1]

|u′(r)| for all r and such that u′′
ε changes sign in

(1 − ε, 1) at most three times. In addition, we set wε(a, r) = uε(ar), r � 0.
Then, the mappings wε(a, ·) : [1, 2) → H1

r are continuously differentiable. We

have:
∂Iα(wε(a, ·), v)

∂a

∣∣∣∣
a=1+0

= I ′α,u(uε, v)(γ), where γ = ru′
ε. Consider the

following double limit:

lim
ε→+0

{
lim

ε→+0
I ′α,u(uε, v)(γ)

} ∣∣∣∣
γ=ru′

ε

:= L,

where we mean that the interior limit is taken when γ is ˇxed. Clearly, since
I ′α,u(u, v) = 0, one has:

L = 0 = lim
ε→+0

I ′α,u(u, v)(ru′
ε) = lim

ε→+0

1∫
0

{
rN−1[u′(r)u′

ε(r) + ru′(r)u′′
ε (r)]+

+(rN−1α′)′uε − (rNα′)′′uε + crNuu′
ε + c(rNα)′uε − rNupu′

ε− rNg(u, v)u′
ε

}
dr.
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It is easy to see that all the terms in the integral except, maybe, the second one,
go to the quantities obtained from these terms by substitution of u in place of

uε. As for the second term
1∫
0

rNu′(r)u′′
ε (r)dr =

∞∫
0

rNu′(r)u′′
ε (r)dr, we have

u′′
ε (r) ∼ u′′(r) − u′(1)δ(r − 1), where δ denotes the standard delta-function, at

least in the sense of distributions. In addition, u′′
ε can be nonequal to 0 only in

[0, 1). Thus, taking the limit ε → +0 in the second term, we obtain (11).�

Remark 1. If system (1)Ä(3) is considered in the entire space R
N , then our

derivation of relations analogous to (11) becomes simpler. In this case, it sufˇces

to calculate the quantity
∂Iα(w(a, ·), v)

∂a

∣∣∣∣
a=1+0

which is also equal to 0.

Now, let us take two functions α0, β0 ∈ C3([0, 1]) positive and nonin-

creasing in [0, 1) and satisfying α
(l)
0 (0) = β

(l)
0 (0) = 0 for l = 1, 2, 3 and

α
(l)
0 (1) = β

(l)
0 (1) = 0 for l = 0, 1, 2, 3, and keep them ˇxed throughout the

article. For each λ, μ � 0, denote by Kλ,μ the set of such positive nonincreasing
solutions (u, v) of (7)Ä(9) taken with α = λα0 and β = μβ0 that λα0(r) � u(r)
and μβ0(r) � v(r) for all r ∈ [0, 1]. Set K =

⋃
λ,μ�0

Kλ,μ.

Lemma 2. There exists D0 > 0 such that for any functions g and h contin-
uously differentiable and satisfying hypotheses (h1)Ä(h6) and for any (u, v) ∈ K
one has |u|p+1 � D0 and |v|q+1 � D0.

Proof. We establish the proof only for N � 3 and estimate only |u|p+1

because in all other cases the proof can be made by analogy. In view of the
deˇnition of λ, one has

0 � λ

1∫
0

rN−1α0(r)dr �
1∫

0

rN−1u(r)dr,

hence

0 � λ � C|u|2 (12)

for a positive constant C because the function α0 is ˇxed and by analogy for μ.

Now, let us prove that there exists C > 0 such that u′2(1) + v′
2(1) � C for

any (u, v) ∈ K . On the contrary, suppose that there exists a sequence {(un, vn)}
of this class such that u′

n
2(1) + v′n

2(1) → +∞ as n → ∞. Then, one of the two
following possibilities can occur: 1) the sequence (un, vn) is bounded uniformly
in [0, 1] and 2) this sequence is unbounded.
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Let us consider case 1. It follows from (7), (8) and (12) that the sequences
{u′′

n} and {v′′n} are bounded from below in [0, 1]. Hence,

(u′
n(0), v′n(0)) = (u′

n(1), v′n(1)) −
1∫

0

(u′′
n(r), v′′n(r))dr �= 0

for all sufˇciently large n which is a contradiction.
Then we consider case 2. The sequence (un, vn) is not also uniformly

bounded in [1/2, 1], because otherwise the sequences {u′′
n} and {v′′n} are bounded

from below in the same interval as in case 1 and therefore, one of the sequences
{u′

n} and {v′n} contains a subsequence that goes to −∞ uniformly in r ∈ [1/2, 1].
But then, the sequence (un, vn) is not bounded uniformly in r ∈ [1/2, 1] which
is a contradiction. So, at least one of two sequences {un} and {vn} contains a
subsequence that goes to +∞ as n → ∞ uniformly with respect to r ∈ [1/4, 1/2],
because we consider monotone solutions. In addition, there exists b > 0 such
that λ � bun(r) and μ � bvn(r) for any n and r ∈ [1/4, 1/2]. But then, in
view of equations (7) and (8) and since p, q > 1, by the standard comparison
theorem, each element of the indicated subsequence, at least beginning from the
number N0 > 0, achieves the maximum in [1/4, 1/2] and strictly increases in a
left half-neighborhood of this point of maximum. But this contradicts the fact
that we consider monotone solutions. So, our claim is proved.

Now, multiply (10) by (2 − N)/2 and subtract the result from (11). Then,
in view of (12) and since α0 and β0 are ˇxed, we obtain for any ε > 0 after
simple transformations: C1(ε)+ |u|22 + |v|22 +ε(|u|p+1

p+1 + |v|p+1
p+1) � |u|p+1

p+1 + |v|q+1
q+1,

where C1(ε) > 0 does not depend on (u, v) ∈ K . But by the Héolder inequality
|u|22 � C2|u|2p+1 and |v|22 � C2|v|2q+1 and thus, |u|p+1 � Constant.�

Remark 2. Note that the constant D0 does not depend on the choice of the
functions g and h obeying hypotheses (h1)Ä(h6) with the same constants c, d, p, q
and C.

Now, we establish the main result of this section.

Proposition 1. Let {gλ} and {hλ}, where λ ∈ Λ, be arbitrary families of
continuously differentiable functions (Λ is an arbitrary set) that satisfy hypotheses
(h1)Ä(h6) with the same constants c, d, p, q and C for all λ. Then, there exists
D > 0 such that for any (uλ, vλ) ∈ Kλ, where K = Kλ is the above-deˇned
set of solutions of problem (7)Ä(9) corresponding to (g, h) = (gλ, hλ), one has
uλ(0) = max

r∈[0,1]
uλ(r) � D and vλ(0) = max

r∈[0,1]
vλ(r) � D.

Proof. By Lemma 2 one has |uλ|p+1 � D0 and |vλ|q+1 � D0 for any
(uλ, vλ) ∈ Kλ and for a constant D0 > 0 independent of λ and of (uλ, vλ) ∈ Kλ.
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By these estimates and hypothesis (h4)

∫
B

uλ(|x|)gλ(uλ(|x|), vλ(|x|))dx ≤ C1 and
∫
B

vλ(|x|)hλ(uλ(|x|), vλ(|x|))dx � C1

for a constant C1 > 0 independent of λ and of (uλ, vλ) ∈ Kλ. Hence, according
to Lemma 2 and (10)

‖uλ‖ � C2 and ‖vλ‖ � C2

for a constant C2 > 0 independent of λ ∈ Λ and of (uλ, vλ) ∈ Kλ. Now, it can
be proved completely as in [7], section 2.2, by using well-known arguments that
|uλ(0)| � D and |vλ(0)| � D for a constant D > 0 independent of λ and of
(uλ, vλ) ∈ Kλ.�

4. PROOF OF THE THEOREM. THE CASE OF SMOOTH g AND h

In this section, we assume in addition to hypotheses (h1)Äh6) that g and h
are C1-functions. Then, proposition 1 holds. In the following, we apply results
presented by H. Amann in [1], Sections 11 and 12. Let C0([0, 1]) be the space
of functions s(r) continuous in [0, 1] and satisfying s(1) = 0, equipped with the
uniform norm. Denote by X the set of functions s(|x|), where s ∈ C0([0, 1]), and
let R be the subset of X consisting of functions s(|x|) such that the corresponding
functions s(r) are nonnegative and nonincreasing in (0, 1). Then, since R is a
closed convex set in X , according to [1] R is a retract in X which means by
deˇnition that there exists a continuous function (retraction) θ : X → R satisfying
θ
∣∣
R

= Id, where Id denotes the identity. In addition, it is easily seen that R×R
is a retract in X × X with one of the retractions θ × θ, where θ is one of the
retractions in X .

For s, t ∈ X , consider the operators Su(s) := (−Δ + c)−1s, Sv(t) :=
(−Δ + d)−1t, S = Su × Sv , (u, v) = T (s, t) := S((g(s, t) + sp), (h(s, t) + tq))
and (uλ, vλ) = Tλ(s, t) := S((λg(s, t) + sp), (λh(s, t) + tq)), where λ ∈ [0, 1]
is a parameter. Clearly, T0 = Tu × Tv with Tu(s) = (−Δ + c)−1(sp) and
Tv(t) = (−Δ + d)−1(tq). We denote also Bρ = {u ∈ R : ‖u‖C(B) < ρ}, where
ρ > 0. It is known that for any s > 1 the linear operators Su and Sv are bounded
from C(B) into the Sobolev space W 2

s (B) which is compactly embedded into
C1(B) for all sufˇciently large s. Therefore, if Tλ(u, v) = (u, v) for some
u, v ∈ X , then (u, v) is a C2 radial solution of the system obtained from (1)Ä(3)
by substitution of functions λg and λh in place of g and h, respectively. Also,
all the operators we introduced a moment ago transform X into X and X × X
into X × X , respectively, because it is clear that the functions Su(s) and Sv(t)
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are radial. Note also that the functions λg and λh, λ ∈ [0, 1], satisfy assumptions
(h1)Ä(h6) with the same constants c, d, p, q and C.

Now, we consider three sets A, B ⊂ R and F ⊂ R × R bounded, respec-
tively, in X and in X × X and open in the induced topologies of R and R × R,
respectively. According to [1], Sections 11 and 12, if Tu(u) �= u for any u ∈ ∂A,
v �= Tv(v) for any v ∈ ∂B and Tλ(u, v) �= (u, v) for any (u, v) ∈ ∂F , then the in-
dexes of the operators Tu, Tv and Tλ are determined: i(Tu, A, R), i(Tv, B, R) and
i(Tλ, F, R×R), respectively. In fact, indexes take integer values and by deˇnition,
for example, i(Tu, A, R) = deg(Id − Tu ◦ θ, θ−1(A), X), where θ is an arbitrary
retraction in X corresponding to the retract R (the index does not depend on the
retraction θ). In addition, i(T0, A×B, R×R) = i(Tu, A, R)·i(Tv, B, R) provided
Tu(u) �= u and Tv(v) �= v for any u ∈ ∂A and v ∈ ∂B and if Tλ(u, v) �= (u, v)
for all λ ∈ [0, 1] and for all (u, v) ∈ ∂F , then i(T, F, R × R) = i(T0, F, R × R).

Proposition 2. For any λ ∈ [0, 1], the operator Tλ transforms R × R into
R × R.

Proof. We prove this statement for λ = 1 to make the notation simpler. Let
s, t ∈ R and (u, v) = T (s, t). As is noted earlier, u, v ∈ C1(B) and, in addition,
(u(r), v(r)) is a solution (maybe, a weak solution) of the problem

−(rN−1u′)′ + crN−1u = rN−1[g(s(r), t(r)) + sp(r)],

−(rN−1v′)′ + drN−1v = rN−1[h(s(r), t(r)) + tq(r)], (13)

u′(0) = v′(0) = u(1) = v(1) = 0.

It is well known that, in fact, u, v ∈ C2([0, 1]) (see, for example, [7], proof of
theorem II.1.1). Therefore, by the maximum principle, u(r) � 0 and v(r) � 0
for all r ∈ [0, 1]. We have also to prove that u′(r), v′(r) � 0 in [0, 1). On
the contrary, suppose that, for example, u′(r1) > 0 at some r1 ∈ (0, 1). De-
note by [r0, r1] ⊂ [0, r1] the maximal left half-interval such that u′(r) � 0
for all r ∈ [r0, r1]. Then, u′′(r0) � 0 and hence, in view of the differ-
ential equation cu(r0) ≥ g(s(r0), t(r0)) + sp(r0). Therefore, it is clear that
cu(r1) > g(s(r1), t(r1)) + sp(r1) and so, it is easy to see from the equation
that u′(r) � 0 everywhere in [r1, 1], which contradicts the boundary condition
u(1) = 0. So, our proposition is proved.�

Remark 3. In view of propositions 1 and 2 and the arguments at the begin-
ning of this section, a(α0, β0) + Tλ(u, v) �= (u, v) for any λ ∈ [0, 1], a � 0 and
(u, v) ∈ ∂(B2D × B2D) and Tu(u) �= u and Tv(v) �= v for any u, v ∈ ∂B2D,
where the boundaries ∂(B2D × B2D) and ∂B2D are taken in the topological
spaces R × R and R with the induced topologies, respectively.
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Proposition 3. For any λ ∈ [0, 1] one has i(Tλ, Bρ × Bρ, R × R) =
i(Tu, Bρ, R) = i(Tv, Bρ, R) = 1 if ρ > 0 is sufˇciently small and i(Tλ, B2D ×
B2D, R × R) = i(Tu, B2D, R) = i(Tv, B2D, R) = 0.

Proof. This result is, in fact, a variant of Lemma 12.1 in [1]. In view of
remark 3, the second claim immediately follows from this result. Further, since
according to hypothesis (h6) [λg(s, t) + sp] = o(s) as s → +0 uniformly in
t ∈ [0, 2D] and [λh(s, t) + tq] = o(t) as t → +0 uniformly in s ∈ [0, 2D] and
in λ ∈ [0, 1], for any λ ∈ [0, 1], sufˇciently small ρ > 0 and s, t ∈ Bρ one
has ‖uλ‖C(B) < ρ/3 and ‖vλ‖C(B) < ρ/3, where (uλ, vλ) = Tλ(s, t). Hence,
by Lemma 12.1 in [1], i(T, Bρ × Bρ, R × R) = i(Tλ, Bρ × Bρ, R × R) =
i(Tu, Bρ, R) · i(Tv, Bρ, R) = 1 for the same ρ and λ.�

In R × R, consider the set

A = ((((B2D × B2D) \ [(B2D \ Bρ) × Bρ]) \ [Bρ × (B2D \ Bρ)]) \ (Bρ × Bρ)),

where ρ > 0 is sufˇciently small. By proposition 3, the arguments above and the
results in [1], Section 11, one has: i(T, (B2D \Bρ)×Bρ, R×R) = i(T0, (B2D \
Bρ)×Bρ, R×R) = i(Tu, B2D \Bρ, R) · i(Tv, Bρ, R) = (0−1) · (+1) = −1. By
analogy, i(T, Bρ × (B2D \ Bρ), R × R) = −1. So, we have: i(T, A, R × R) =
0 − (−1) − (−1) − (+1) = 1. Therefore, the operator T has a ˇxed point
(u, v) ∈ A. By construction u �≡ 0 and v �≡ 0, u(r) and v(r) are nonnegative
and nonincreasing functions in (0, 1) and (u(|x|), v(|x|)) is a C2(B) ∩ C(B)
solution of problem (1)Ä(3). By standard arguments u(r) > 0 and v(r) > 0 in
[0, 1) (because otherwise u(r0) = u′(r0) = 0 or v(r0) = v′(r0) = 0 at some
point r0 ∈ (0, 1), but this relations imply u(r) ≡ 0 (resp., v(r) ≡ 0) in (0, 1) by
the uniqueness theorem). Our theorem is proved in the case when g and h are
continuously differentiable functions.�

5. PROOF OF THE THEOREM. THE CASE OF NON-SMOOTH g AND h

Take two sequences {gn} and {hn} of smooth functions gn and hn con-
verging to g and h, respectively, uniformly in [0,∞) × [0,∞) and satisfying
hypotheses (h1)Ä(h6) uniformly in n (that is, with the same constants c, d, p, q
and C and the same functions γA for all n). Note that the constant D > 0 intro-
duced in proposition 1 can be chosen the same for all gn and hn. For each n, by
(un, vn) we denote an arbitrary positive radial nonincreasing solution of (1)Ä(3)
taken with g = gn and h = hn. Then, as earlier, the sequence {(un, vn)} contains
a subsequence still denoted {(un, vn)} that converges in C1(B)×C1(B). Denote
by (u, v) its limit. Let us prove that u �≡ 0 and v �≡ 0. On the contrary, suppose
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that, for example, u ≡ 0 in [0, 1]. Then, un → 0 in C1(B). But from hypothesis
(h6) and (10) by the Sobolev embedding we have

C1|un|2p+1 � C2γ(un(0))|un|2p+1 + |un|p+1
p+1,

with constants C1, C2 > 0 independent of n. This relation easily implies
|un|p+1 � C3 > 0 with a constant C3 independent of sufˇciently large n, and we
get a contradiction. So, it is proved that u �≡ 0 and v �≡ 0. In addition, obviously
u and v are radial functions, u(r), v(r) � 0 and u′(r), v′(r) � 0 in (0, 1) and
(u(|x|), v(|x|)) is a ˇxed point of T in R × R, hence, a C2(B) ∩ C(B) solution
of system (1)Ä(3) as earlier. The fact that u(|x|), v(|x|) > 0 in B is well known
and can be proved as in the previous section. So, our theorem is completely
proved.�
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