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Oyukuuu ['piH  ABYX30HHON MOiesid cBepXIpoBoauMoctu X 66 pa
B NIPUOIIKEHUH CPEHEro Mo

Hcnosnp30B HUE TEXHUKH yp BHEHMS! ABMKeHWS (yHkumii ['pur s perue-
HUs 9(peKTUBHON JBYX30HHON MOJIENN BBICOKOTEMIIEP TYPHON CBEPXIPOBOIAUMOCTU
X 66 pnt BKymp T X OCHOB HO H Jirebpe x 60 pmosckux omep topoB (XO). Ilo-
K 3 HO, YTO IPH y4eTe HHB PU HTHOCTU OTHOCHUTENBHO TP HCJSLMHA U CIUHOBOM
nuaBepcun Jre6p XO NPHUBOIUT K UHB PH HTHBIM CBOWCTB M PN CT THCTHYECKHX
cpenaux. C MOMOIIBIO 3THX CBOMCTB, B P MK X MPHOIKEHUS] CPEAHETO MO MOJETIH,
MOXHO CTPOTO OIpPENENNUTh W YIPOCTHTh BBIP XE€HHS M TPHLBI Y CTOT U M TPHLBI
cpynkmii I'pun . 19 KoppensauuOHHbIX (DyHKIHUI, ONUCHIB IOIIMX HOPM JIbHBIN CK -
YOK CHUHIVIETOB U HOM JIbHOE OOMEHHOE CIl PUB HHE, KOTOPbIe BXOIAT B BBIP XKEHHs
M TpuIl 4 CTOT M (yHKIMI ['puH , omuc H Tmpouexyp MOHIKEHUS KOpPPESLHOH-
HOTO MOpAIK , KOTOP S OCHOB H H ONpejesieHud U NpeHeOpeKeHHH dKCIIOHEeH-
LU JIBHO M JIBIX BEJIMYUH B CIIEKTP JIBHBIX MPEACT BIEHUAX 3TUX KOPPENSLHUOHHBIX
pyHKLUHA.
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Rigorous Derivation of the Mean-Field Green Functions
of the Two-Band Hubbard Model of Superconductivity

The Green function (GF) equation of motion technique for solving the effective
two-band Hubbard model of high-7, superconductivity in cuprates rests on the Hub-
bard operator (HO) algebra. We show that, if we take into account the invariance
to translations and spin reversal, the HO algebra results in invariance properties of
several specific correlation functions. The use of these properties allows rigorous
derivation and simplification of the expressions of the frequency matrix (FM) and
of the generalized mean-field approximation (GMFA) Green functions (GFs) of the
model. For the normal singlet hopping and anomalous exchange pairing correlation
functions which enter the FM and GMFA-GFs, the use of spectral representations
allows the identification and elimination of exponentially small quantities. This pro-
cedure secures the reduction of the correlation order to the GMFA-GF expressions.
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INTRODUCTION

A consistent theoretical model of the high critical temperature superconduc-
tivity in cuprates is to be able to accommodate both the normal and supercon-
ducting states under incorporation of the essential features of these systems (see,
e.g., [1] for a review): strong antiferromagnetic (AFM) superexchange interac-
tion inside the CuOs planes, occurrence of two relatively isolated energy bands
around the Fermi level, able to develop d,2_,2 pairing: one stemming from the
single-particle copper d,>_,> states and the second one from the singlet doubly
occupied states generated [2] by crystal field interaction; hopping conduction for
an extremely low density of the free charge carriers.

The p—d model [3], while incorporating all these features, is too cumbersome
and cell-cluster perturbation theory [4,5] providing a hierarchy of the various
interaction terms was used to derive simpler models from it. Extreme limit
cases of this reduction procedure are various effective one-band ¢—J models
(see, e.g., [6,7] and references therein) which, while unveiling the role played by
the AFM exchange interaction in the occurrence of the d-wave pairing, address
exclusively the superconducting state.

The reduction of the p—d model to an effective two-band Hubbard model
considered by Plakida et al. [8], corroborated with the use of the equation of mo-
tion technique for thermodynamic Green functions (GF) [9], provided the simplest
approach to the description of both the normal [8, 10] and the superconducting
states [11-13] within a frame securing rigorous fulfilment of the Pauli exclusion
principle for fermionic states.

The Green function technique rests on the Hubbard operator algebra. Its
rigorous implementation onto a system characterized by specific symmetry prop-
erties (translation invariant two-dimensional spin lattice, spin reversal invariance
of the observables) results either in characteristic invariance properties of several
correlation functions, or in the occurrence of some exactly vanishing correlation
functions. The use of these results allows rigorous derivation and simplification
of the expressions of the frequency matrix and of the generalized mean-field
approximation (GMFA) Green functions of the model.

The obtained expressions contain higher order boson—boson correlation func-
tions (CFs). For the CFs involving singlets (normal singlet hopping CFs and



anomalous exchange pairing CFs), an approximation procedure which avoids the
usual decoupling schemes and, yet, secures the correlation order reduction to
GMFA-GF expressions, under the identification and elimination of exponentially
small quantities, is described.

The organization of the paper is as follows. Section 1 summarizes essentials
of the two-band Hubbard model and GMFA-GF equations. Section 2 describes the
invariance properties following from the translation invariance of the underlying
spin lattice. Section 3 derives invariance properties and constraints following from
the invariance of the macroscopic properties of the system under spin reversal.
On the basis of the results of Secs. 2 and 3, rigorous derivation of the frequency
matrix in the (r,w)-representation is done in Sec. 4. The derivation of GMFA-
GF expressions for the boson—boson correlation functions involving singlets is
discussed in Sec. 5.

Collecting together the results of Secs. 4 and 5, expressions of the fre-
quency matrix and of the GMFA Green function matrix are derived in the (q,w)-
representation in Secs. 6 and 7, respectively. These results explicitly incorporate
both hole-doping and electron-doping features of the cuprate systems through the
singlet hopping and superconducting pairing terms.

The paper ends with conclusions.

1. MEAN-FIELD APPROXIMATION

The Hamiltonian of the effective two-band singlet-hole Hubbard model [8]
is written in the form

H=FEY X{"+EY Xt
TR0 D T K ) T K Y 20T ) ()

1,0 1,0

The summation label ¢ runs over the sites of an infinite two-dimensional (2D)
square array the lattice constants of which, a, = a,, are defined by the underlying
single-crystal structure. The spin projection values in the sums over ¢ are o =
+1/2,6 = —o.

The Hubbard operators (HOs) X iaﬁ = |ia) (i3] are defined for the four states
of the model at each lattice site i: |0) (vacuum), |o) = |1) and |5) = ||) (single-
particle spin states inside the hole subband), and |2) = |T]) (singlet state in the
singlet subband).

The multiplication rule holds X’ X" = 64, X*". The HOs may be fermi-
onic (single-spin state creation/annihilation in a subband) or bosonic (singlet
creation/annihilation, spin or charge densities, particle numbers). For a pair of



fermionic HOs, the anticommutator rule holds {X” XM = 600, X0 4
577QXZ7ﬁ ) whereas, if one or both HOs are bosonic, the commutation rule holds
[Xiaﬂ,XjW] = 6 (05, X" — 6,0 X77). At each lattice site i, the constraint of
no double occupancy of any quantum state |ic) is rigorously fulfilled due to the
completeness relation X0 + X7 + X779 + X272 = 1.

In (1), E1 = €4 — i denotes the hole subband energy for the renormalized
energy €4 of a d-hole and the chemical potential ;. The energy parameter of the
singlet subband is Fy = 2E; + A, where A =~ A,y = €, — €4 is an effective
Coulomb energy U.g corresponding to the difference between the two energy
levels of the model.

In the description of the hopping processes, label 1 points to the hole subband
and 2 to the singlet subband. The hopping energy parameter Ko, = 2tpqKqp
depends on ?,4, the hopping p—d integral, and on energy band-dependent form
factors, K,p. Inband (K11, K22) and interband (o1 = KCq2) processes are present.
The Hubbard 1-forms

U= v XX 2)

incorporate the overall effects of specific hopping processes (through the labels
(aB,vn) of the pair of Hubbard operators) involving the lattice site 7 and its
neighbouring sites.

Up to three coordination spheres around the reference site ¢ do contrib-
ute [4,5] to the sum (2), each being characterized by a small specific value of the
overlap coefficients v;; (v for the nearest neighbour (nn), v» for the next nearest
neighbour (nnn), v3 for the third coordination spheres).

The quasi-particle spectrum and superconducting pairing for the Hamil-
tonian (1) are obtained [11,12] from the two-time 4 X 4 GF matrix (in Zubarev
notation [9])

Gijo(t —t') = ((Xio (1) | X[, (#))) = =i6(t — ) {Xio (1), X[, 1), (3)

where (---) denotes the statistical average over the Gibbs grand canonical
ensemble.

The GF (3) is defined for the four-component Nambu column operator

Xio = (X72 X7 X27 X707, @)

where the superscript T denotes the transposition. In (3), X JTU is the adjoint
operator of X, X}o = (X377 X979 X972 X0).



The GF matrix in (r, w)-representation is related to expression (3) of the GF
matrix in (r, t)-representation by the non-unitary Fourier transform

+
]. ’
Gijo(t —t') = =5 / e W=t qu . (5)

The energy spectrum of the translation invariant spin lattice of (1) is solved in
the reciprocal space. In this (q,w)-representation, the GF matrix is related to the
GF matrix in (r,w)-representation by the non-unitary discrete Fourier transform

—iq (rj—r;) A
Gijo(w) NZe a Golq,w). (6)

In the (r,t)-representation, the notation (X" (t)|X;"(t))) denotes an el-
emental GF of labels (a8,~n). Similarly, ((X*° |X7"))w (assuming Hubbard
operators at t = 0), in the (r,w)-representation. In the (q, w)-representation, it is
convenient to use the notation GV (q, w).

We shall consider henceforth the GMFA-GF, ég(q,w). Its derivation in-
volves:

(i) Differentiation of the GF (3) with re ﬂpect to ¢ and the use of the equations
of motion for the Heisenberg operators X"

(ii) Derivation of an algebraic equation for Gij(,( w), Eq. (5).

(iii) Elimination of the contribution of the inelastic processes to the commu-
tator Z;, = [Xw, H] entering the equation of motion of ng( ).

(iv) Transformation to (q,w)-representation of the obtained equation of
G?ﬂ,( w) by means of the Fourier transform (6).

This finally yields

~ - —1
aw) = ¥ [w-A@] x, )
X = (X, XL}, (8)
A,(q) = Zeiq(r'j_ri) Aijo, Ty =1;—1;, )
Aijo = {[Xio, H,X[,}) . (10)

The matrix A;j, is Hermitian.



2. TRANSLATION INVARIANCE OF THE SPIN LATTICE

Four consequences follow from the spin lattice translation invariance.

e The definition of the Hubbard 1-form (2) over a translation invariant spin
lattice results in the identity (which secures the hermiticity of the Hamil-
tonian H):

TP = — 1P (11)

e The Green function (3) of the model Hamiltonian (1) depends only on the
distance r;; = |rj — r;| between the position vectors at the lattice sites i
and j [9].

e The one-site statistical averages are independent on the site label 7, (X f‘ﬁ )=
(Xfﬂ ), (V 4, 7). For this reason, the site label in the one-site averages will
be omitted.

e The two-site statistical averages (X X]") remain invariant under the in-
terchange of the site labels ¢ and j,

(XPPXT) = (X7PX])™), i . (12)

3. SPIN REVERSAL INVARIANCE

The energy spectrum of the system described by the Hamiltonian (1) does not
depend on the specific values o = 41/2 of the spin projection. As a consequence,
the definition of the GF (3) either in terms of the o-Nambu operator (4) or the
o-Nambu operator

Xie = (X72 X7 X727 X707 (13)

has to result in mathematically equivalent descriptions of the observables. This
means, however, that the mathematical structures of the frequency matrices ./L-jg,
Eq. (10), and A;j; = <{[Xi5,H],X;5}> emerging from the 6-Nambu opera-
tor (13), have to be related to each other.

The identification of the existing relationships is constructive: we calculate
and compare the corresponding matrix elements of ./Zlijo- and Aijfy. The mul-
tiplication rules and the commutation/anticommutation relations satisfied by the
Hubbard operators result in the following general expression of the elemental
anticommutators entering their definitions:

1,

{x™, H|, X%} = O+ (1 — 5z‘j)VijT?”’w, (14)



with one-site contributions given by
0 = { [ )+ o] X2
+ Z‘”J [‘ElX P T KT o 20 (7 T )
+ (= E2X T+ K Z TW 7 4 Ko Z 2070“0 UO)
dxo (K11 Z TW 07 1 Koy Z 207”“0 ‘72)}4-
+ 5%{ - {(Z Oro)E1 +5A2E2} XMy
+ Z Opo [E1 T+K11 7'1 ; —IC227-1”3 291 Koy .20(7.11/3 50, . f? 02)} +
J + 6,2 (B2 X2+ Koz ZT” 24 Koy Z 207_1/0 Ocr)_
o (K11 Z 77+ Ko Z 2077 2‘7)}_
_ Z Sro {5 (K704 20 Koy 71177 ) - 8o (Kna 717 2 90K ot 00’):| n
T Z Opo [5)\0(/C11TV“ 0420 K1 757%) — Sra (Koot ¥ 220 Koy i ao)]
_ Z Opo [5 ’C117'1 .0 +20/C217 72y 5y2(lg2271 ¢ _20K21TA¢ JO):| n
+ Zéyg{ uo(/CuTl o +201c217w, ) u2(/C227M’ _QUICNA@ og)}
and two-site contributions given by
TV = 5,3 (30 0u0) (0 X2OX D — Ko X 22X 29
+ (=0u0K11 +5/L2/C22)Z X}"XJW} +
+ 9 [(Z Ore ) (K11 X X0+ Ko XM X 2 1

+ (6x0K11 —5,\2]C22)Z X;TMXJL‘/U} -

g



— Z 6)\0{5V0K11X?“X;‘7¢ _5V2K22X,52#X;@+

Ko 20 [0 X P X Y740, X XU, A(XPUX XX )] b+

+3 60 {%Oicuxﬁ"x;o —6paKas X)X+

K120 (0,0 X 22X P10, X0 X440, (XP2XO1X )0 X 1)+

+ Z dvo [5>\0’C11X;WX§M—5>\2/C22X;7#X?¢+

K120 (8,0 X7 X7+ 8,2 X7 X]%) | -

> 6o [5MOIC11X}UX;° — 6,2k X)X V24

+ Koy '20(5>\0Xf#XJl'/2+5>‘2Xfﬂxfyo)} *
+ K1Y 20(8308,2 X7 X T8 —8ra6,0 X T X T4
Ao yve AG yvo
— 6“‘05@2Xi X] +6/L25@0X’£ X] )'

The comparison of the results obtained from (14) for the corresponding matrix
elements of A;;, and A;;z and the use of the translation invariance properties (11)
and (12) result in four distinct kinds of relationships:

e Under the spin reversal o — &, the following invariance properties hold
for the normal one-site statistical averages:

(X77) = (X77), (15)
(r72%7) = 7 2) (W) = (e, (16)
20(r77") = 25(r{77"). (17)

e The identity (C7*%7 4 C?77%) = 0 holds, therefrom we get for the one-site
anomalous averages,

(X% =0, (18)
(772 = —(r)77%), (19)
(r070%) = (r{27%). (20)

The first two equations imply that the contributions of the one-site terms
(X92) and Y (7)77%) to the superconducting pairing vanish identically



irrespective of the model details (like, e.g., the relationship between the
lattice constants a; and ay).

For a rectangular spin lattice (a, # ay), Eq. (20) points to the occurrence of
a small non-vanishing one-site contribution to the superconducting pairing
originating equally in both energy subbands. However, over the square spin
lattice (1) (a, = ay), each term of (20) vanishes for d-wave pairing due to
the symmetry in the reciprocal space [12].

e Under the spin reversal ¢ — &, the following invariance properties hold
for the two-site statistical averages:

(XP7X77) = (XP7XP7),  (X7°X77) = (X7°X77), D)

(XEXTT) = (XPX]7), (XX77) = (X[°X]7), )
(XPX77) = (X2 X77). (23)

e The operator of the number of particles at site ¢+ within the singlet subband,
N, is the sum of spin o and & components,

Ni=nio +nis, nic=X"+X72 ni=X7"+X” (24

Similar relationships hold for the number of particles at site 7 within the
hole subband, N/,

N =iy +nig, nip = X774+ X700 nip = X774+ X0 (29)

7 10
Due to the completeness relation,
Ni+NF=2, ng +nl =ni +nl =1. (26)

These equalities simply reflect the fact that, at a given lattice site ¢, there is
a single-spin state of predefined spin projection, whereas the total number
of spin states equals two.

Therefore, the operator N;, Eq. (24), provides unique characterization of
the occupied states within the model [8, 10, 12].

4. FREQUENCY MATRIX IN (r,w)-REPRESENTATION

A straightforward consequence of the results established in Sec. 3 is the
simplest general expression of the frequency matrix A;;,, Eq. (10):

A= (5 )+ 0o (A oy ) @



The one-site 2 X 2 matrix ¢, is Hermitian, its elements do not depend on the
particular lattice site 1,

. Ei+ A)xa + aozn 20a91
Co = ( ( 20)aX§1 E1x1 + a2 ) ’ (28)
and are expressed in terms of the spin reversal invariant quantities
X2 = (Nig) = (nis), (29)
xi = (ni,)=(njp) =1-xe, (30)
azs = K (ry77%) — Koo (r7>2%), (31)
agt = (K —Ka2) - 20(r727%) + Kar (1 77%) = (777%7)). (32)

The normal hopping 2 x 2 matrix lA)ijg is symmetric,
. d?2  20d?!
Dijo = ( Yot 117 ) : (33)
J 20d;; d;;

Due to the constraints (21)-(22), the charge-spin correlations entering the
matrix elements of (33) get exactly decoupled from each other, such that

a7 = Kaa(x§ +x5) — ’Cllej_hv
dzljl = Kulxj + (x1 — x2)vij + ij] - IC22X?J'_h’
a7 = Kal(x§; — xavij) + ij] - /C21Xf]*h»

with the three spin reversal invariant weighted boson—boson correlation functions
representing, respectively, charge—charge (c), spin—spin (S), and singlet-hopping
(s-h) correlations:

Xij = Vig(NilN;) /4, (34)
X5 = vi;(SiS;), (35)
X5 = i (XPX30). (36)

In (35), S; = (S7,57), with S7 = (X77 — X77)/2 and SY = X7°.
The anomalous hopping 2 x 2 matrix A;j, has a very special form namely,
A —Ko1- 20 3(K11 4 K22) air
Ao = 2 pair 37
! ( —3(K11 + Ka2) Ka1 - 20 Xij 37)

where the spin reversal invariant weighted boson—boson pairing (pair) correlation
function is given by

XM = v (XP2NG) = 20 (XPA(XT7 + X72)) = (38)
= —Ui (NI XP%) = =20 ((XJ7 + X)X %), (39)



In Egs. (38) and (39), the derivation of the second expression from the first one
makes use of the spin reversal invariance property (23).

To get a workable expression of the frequency matrix, approximations have to
be derived for the boson—boson statistical averages entering the two-site hopping
matrix elements. In the next section, we show that the method of reference [12],
yielding the pairing correlation function (XP2N;) in terms of GMFA Green
functions within an approach able to identify and rule out exponentially small
terms, can be extended to the singlet hopping correlations (X?X?°) as well.

S. HOPPING PROCESSES INVOLVING SINGLETS

The right approach to the reduction of the order of correlation of the boson—
boson statistical averages (X2 X J’\ "y = (X J’\ " X92) goes differently for the hole-
doped and electron-doped cuprates.

5.1. Reduction of the Correlation Order for Hole-Doped Cuprates. In these
systems, the Fermi level (the zero point energy) stays in the singlet subband. We
get the estimates Fo ~ —A, Fo — A >~ —2A, Fo + A ~ 0. With A ~ 3 eV,
BA ~ 3.5-10* T~t. Therefore, at T < 300 K, the quantities containing the
factor e#F2 ~ ¢7AA < 7100 < 10~ are negligible.

We start with the following form of the spectral theorem [9]:

400
" i dw N
(23 = 3 [ e (P e = (XX )] @0

written for anticommutator retarded (w + ic), respectively advanced (w—ie) Green
functions. Their equation of motion in the (r,w)-representation is

(W = Ba) (X2 |X") ) = 2(XP2X M)+
Ko 20 ({71 N (77X N @D
where, for the sake of simplicity, the labels +ic, ¢ = 0T, describing, respectively,
the retarded and the advanced Green functions have been omitted. In Eq. (41),

the higher order r.h.s. contributions coming from the inband hopping terms have
been dropped off. Replacing (41) in (40), we get

<X02X/\p’> ~ K21220/+OO diwx
7 J ~ o 1—1—6*5""

% (=3[ s (T e (2721 ).
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To evaluate the imaginary part, we use the identity [9]

1 1
= —i — E»).
w— FEy+ie Pw—Eg imo(w 2)

The integrals over the J-function yield (finite) GF real parts at w = FE5, multiplied
by a thermodynamic factor ~ e %2 <« 1. The imaginary part of the hole
subband GF <<7_10§,00‘X;\H>>w+16 shows a ¢-like maximum at w = E5 — A, where
(w— E3)~' ~ A~! and the thermodynamic factor reaches a value ~ e~22.
The only non-negligible contribution to the principal part integral comes from
the singlet subband GF ((7{ 272\ x J’\ ")) w+tie the imaginary part of which shows a
§-like maximum at w = F2+A =~ 0. This allows us to approximate (w—F2) ! ~

A~ within the integral over the singlet subband GF to get
(XD2XMY) ~ (1 -6, 4)@ > 20 (XM (42)
i )= VAN 1,i i/

Replacing this result in Eq. (38) and using (2) we get

Ko1vij

Xpair ~ (1_5”) X

(]

[40:520 (XPXTH=3 " vim Y 20(X72X02N,)] . 43)
m#(ij)

Omitting the three-site terms, we get the two-site approximation of the supercon-

ducting pairing originating in the singlet subband,

4IC21 I/in
A
which reproduces the well-known two-site exchange term of the ¢—.J model.

For the singlet hopping correlation function, (42) yields the two-site approx-
imation

Xffi‘” ~ (1—6;;) 26 (X72XT?), (44)

2
2’C21Vij

X~ (1= 6y)

5.2. Reduction of the Correlation Order for Electron-Doped Cuprates.
The Fermi level (the zero point energy) stays now in the hole subband. We have
the estimates Fy ~ A, Fy + A ~ 2A, F5 — A ~ 0.

It is convenient now to start with the alternative form of the spectral
theorem [9]

26 (X72XT0). (45)

—+oo
. i dw
COX) = o [ s [P e~ (X )ai] . a6)

with the retarded and advanced GFs following from the same equation (41).

11



Exponentially small quantities result from the é-term of (w — Eo + ig)~!
and from the singlet subband GF ((r{7"*|X*)), 4. The hole subband GF

<<TOU O”|X MY 4ic yields the non- neghglble contribution
lC
<X;\/LXZQ2> 1 _ Z] 21 Z 25 ?\,U. Oa 00> (47)

Replacing in (39) and omitting the three-site terms, we get the two-site approxi-
mation of the superconducting pairing originating in the hole subband,

2
4K21Vij

XoH o (1= 65)

20 (X7 X77). (48)

Finally, the two-site approximation of the singlet-hopping correlation function is

2
2K21Vij

(XP2X70) ~ (1 6y) 26 (X7 X77). (49)

In conclusion, the GMFA superconducting pairing is a second order effect.
The lowest order contribution to it originates in interband hopping correlating
annihilation (or creation) of pairs of spins at neighbouring lattice sites ¢ and j
within that energy subband which crosses the Fermi level.

Similarly, the singlet hopping is a second order effect as well. It mainly
proceeds by interband ¢ == j single-particle jumps from the upper energy subband
to the lower energy subband.

6. FREQUENCY MATRIX IN (q, w)-REPRESENTATION

The calculation of the matrix elements of fl(,(q) from Eq. (9) asks for three
essentially different kinds of Fourier transforms, namely,

e The averages of the Hubbard 1-forms entering Eqgs. (31) and (32) result in
sums of products of g-space averages and geometrical form factors:

3

L,V 1 v

(m0) = Y v 5 D_AXMX ) gra(a) (50)
a=1 q

for label sets {(A\u, vp)} € {(05,50); (02,20); (02,50)}.

The quantity (X**X"%¥), denotes the average of the g-space image of the

product of Hubbard operators of labels A\ and v, respectively,

. +m d

i w

XA/LXM,@ —

< =5z | 1 + e~ fw

— 00

{G’\"’W(q, wHie) —GM¢(q, w—is)} .

(51

12



Finally, in Eq. (50), v.(q) denote the nn (o« = 1), nnn (o = 2), and
third neighbour (« = 3) geometrical form factors, v1(q) = 2[cos(qza,) +
cos(qyay)], 72(q) = 4cos(qeas)cos(qyay), ys(a) = 2[cos(2qraz)+
cos(2qyay)].

e For the two-site weighted singlet hopping (36) and the superconducting
pairing (38), the Fourier transforms result in convolutions of specific aver-
ages and geometrical form factors. The results are as follows:

— Singlet hopping

3
‘ 1
M) =D vl Y Be(a—k), (52)
a=1 k

where Zx = 20(X°2X%%),, while Zx = 20(X%7 X29), for hole-doped
and electron-doped cuprates, respectively, with averages defined in (51).

— Superconducting pairing
. 1
air _ 2
X" (q) = E Voo N Ek Mkya(q — k), (53)

where TI, = 25(X°2X72)y, while Iy = 20(X% X))y for hole-doped
and electron-doped cuprates, respectively, with averages defined in (51).

e The charge—charge and spin—spin correlation functions (34) and (35) are
treated approximately following [8, 10]:

— The order of the charge—charge correlation function (N;N;) is lowered
using a Hubbard type I approximation decoupling procedure (IV;NN;) ~
(Ni)(Nj) = 2x2.

— The spin—spin correlation function (S;S;) is kept undecoupled, but treated
phenomenologically. Equation (2) implies the occurrence of up to three
nonvanishing spin—spin correlation functions: nn, Xf = (SiSii% /y>, nnn,
X5 = (SiSita,+a,). and X5 = (SiSit2a,,,). These are site independent
quantities.

Using the above results, we get from (9) and (27) the mathematical structure of
the frequency matrix A, (q) as follows:

- ( E,(q b, (q)
A”(Q)‘<<ti>a<q>>* —<E:,<q>>T)' 59
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The normal 2 x 2 matrix contributions to A,(q) show the characteristic
o-dependence,

E}<q)=( c2 202 ); —(}(q))Tz( e 2065 ) (55)

206;1 C11 20’621 —C11

with the o-independent terms c,;, carrying normal one-site and two-site matrix
elements,

2 = c(q) = (E1+ A)xa + aze + d(q),
ci1 = cu1(q) = Eixa + a +di(q),
21 = c21(q) = ag + dai(q),
3
1 .
dap(@) = Kap ) vaval@a + (=1 xaxe] + 5 Jarx” " (@).
a=1

The one-site terms are defined by Eqs. (31)-(32) and (50). The exchange energy
parameters are given by

Jab = 4ICabIC21/A7 {ab} € {227 117 21}’ (56)

while the singlet hopping contribution x5~ (q) is given by Eq. (52).
The anomalous 2 x 2 matrix contributions to A, (q), obtained from (37),
show the characteristic o-dependence,

. o —206b &b\ s [ —206b° &b

with & = Ja1, & = (J11 + J22)/2, whereas b = b(q) is a shorthand notation for
the pairing matrix element (53).

Remark 1. The spin reversal ¢ — & symmetry properties of the elemental
Green functions entering the matrix GF (3) are identical fo those established for
the underlying frequency matrix A,(q).

7. GMFA GREEN FUNCTION

From Egs. (15) and (18) it follows that the matrix y, Eq. (8), is diagonal and
spin reversal invariant, with two nonvanishing matrix elements,

_ X 0 . (x2 O ~ (00
(D () () e

where x2 and 1 are given by Egs. (29) and (30), respectively.
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Replacing in (7) the expressions (58) of the matrix x and (54) of the frequency
matrix A, (q), we get a structure of the GMFA-GF matrix obeying the general
symmetry properties established in [11],

o aw)  Pqw)
Gg(q’”)‘<<ﬁs<q,w>>f —<é9-,<q,—w>>T)’ 59

where the argument w carries, in fact, the complex value w + ie,e = 0F. (Hence
the elemental GFs containing the argument w point to retarded GFs, while those
containing the argument —w point to advanced GFs.)

The normal 2 x 2 matrix G (q,w) shows the characteristic o-dependence,

0 _ g22(q,w) 20921(01700)),#
Gf"‘*’”‘(zag;l(q,w) gulaw) ) Diqw) 0

with the o-independent components g,;(q,w) found from
Jab(q,w) = Agpw® + Bapw? + Capw + Dap,  {ab} € {22,11,21}.
Here the coefficients A, are given, respectively, by
A2 = x2, Ann=x1, A2 =0,
while By, Cup, Dqy are g-dependent coefficients:

Bos(@) = c22, Bui(q) =ci1, Bai(q) = ca,

Coa(q) = —[xa(ciy + &) + xallear* + & 01*)]/x3,
Cul(a) = —[xa(cy + &b + xa(leal® + &1017)] /X3,
Cor(q) = [e21(x2c11 + xac22) — E1&b1]/ (xax2)-

Das(q) = —[e11(cazcri—|ean |*) + (ca2&i+e11€3+2R (c21)€1€2) 1011 /X3,
D11(q) = —[c22(cazcri—|ean [P (c11E3+coaa+2R (e21)€162) 1D]%)]/ X3,
D21 (q) = {ca1(caacri—|car|?)—[c51 &7 + coréaH(caxtern)€1€]|b12 Y/ (X1 x2)-

The anomalous 2 x 2 matrix Fg(q, w) shows the characteristic o-dependence,

~ . 20f22(q,uJ) f21(q7w) . 1
F(q,w) = ( —fa1(q, —w)  20f11(q,w) ) D(q,w)’ ©b

with the elemental GFs f,;,(q,w) given by

faa(@w) = (Pagw® + Raa)b, {aa} € {22,11},
for(qw) = (Pouw?+ Qoiw + Rayp)b.
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Here, Poy = —&1, P11 = &1, and Py = —&; are g-independent, while

Ras(q) = [(C% + 031)51 +2c1162162 + &1 (f% - 53)“"2)]/9(%7

Ri1(q) = _[(032 + 0312)51 + 2c22¢5, &2 + fl(gf - 53)“"2)]/9(%7

Ro1(q) = [(c1165; +c22021)1 4 (c22e11 + e |*) 2 = &2(E5 =€) 1]/ (X1 x2),
Q21(a) = [(x2c21 —x1¢51)&1 + (2011 —X1022)62]/ (X1 X2)-

The denominator D(q,w) occurring in Egs. (60) and (61), which is propor-
tional to the determinant of the matrix yw — A,(q) in (7), shows the following
monic bi-quadratic dependence in w:

D(q,w) = (W? — uw + v)(W? + uw + v), (62)

where v = v(q) and u = u(q) are found, respectively, from

v? = {[(ezzerlen?) = (& — )P + ([(cartenn) + 2R(ea) e} -
— 4(caztern)R(ea1)&1 (61 — &2) — 4|C21\2(§f—§§)) b7}/ (xix3), (63)

2
X1X2

A necessary consistency condition to be satisfied by the parameters of the model
at any vector q inside the Brillouin zone is v?(q) > 0.

Remark 2. The zeros of the determinant of the GMFA-GF,

1 1
u? - 20 = ?(651 +&1b%) + ?(632 + &%) + (Jea1|* + &310%). (64)
1 2

D(q,w) =0 (65)

provide the GMFA energy spectrum of the system.
At every wave vector q inside the Brillouin zone, this yields for the super-
conducting state the energy eigenvalue set

{Q1(a), Q2(a), —Q(a), —u(q)},
Qi 2(a) = (u/2) £/ (u/2)* —v. (66)

In the normal state (b = 0), Eqs. (63) and (64) reduce, respectively, to

vo = (ca2/x2)(c1n/x1) — lean|*/ (xaxa),
(ca2/x2) + (c11/x1)

Uo

such that the energy spectrum is given by the roots of the second order equation

w? — uow 4+ vy = 0 solved in [8].
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Finally, if we assume a pure Hubbard model (i.e., energy band independent
hopping parameters, K11 = Koo = Ko1 = t, [10]), then a significant sim-
plification of the equations derived in the last two sections is obtained. The
normal 2 x 2 matrix E,(q) becomes symmetric and so is the normal GMFA-
GF Gg(q,w). Moreover, there is a single exchange energy parameter in (57),
& = & = J = 4t?/A, which simplifies the anomalous 2 x 2 frequency matrix

A 20 1
to ,(q) = ( 1 9%
of the GF determinant reduce to

v? = [(e22c11 — ¢31)? + (22 + c11 + 2¢21)* T B*] / (X3x3),  (67)
u? — 20 = [x3e1; + X3k + 2xaxa2cs; + T2 01P] /(X3 x3)- (68)

) Jb, such that the quantities « and v in expression (62)

A non-negative value v > 0 always follows from Eq. (67), however, the reality of
the solutions (66) needs investigation of the domain of variation of the adjustable
parameters of the model.

CONCLUSIONS

The two-band Hubbard model of the high-T, superconductivity in cuprates [8,
12] uses Hubbard operator algebra on a physical system characterized by specific
invariance symmetries with respect to translations and spin reversal.

In the present paper we have shown that the system symmetries result either
in invariance properties or exact vanishing of several characteristic statistical
averages. The vanishing of the one-site anomalous matrix elements is shown to
be a property which is embedded in the Hubbard operator algebra. Another worth
mentioning consequence following from the spin reversal invariance properties
of the two-site statistical averages is the exact decoupling from each other of the
charge and spin correlations entering the matrix elements of the frequency matrix.
The use of these results allowed rigorous derivation and simplification of the
expression of the frequency matrix of the generalized mean-field approximation
(GMFA) Green function (GF) matrix of the model.

For the higher order boson-boson averages (X{*>X?°) and (X?N;), which
enter, respectively, the normal singlet hopping and anomalous exchange pairing
contributions to the frequency matrix, an approximation procedure resulting in
GMFA-GF expressions was described. The procedure avoids the current decou-
pling schemes [14,15]. Its principle, first formulated in [12], consists in the
identification and elimination of exponentially small contributions to the spectral
theorem representations of these statistical averages.

A point worth noting is that the proper identification of exponentially small
quantities asks for the use of different starting expressions of the spectral theorem
for the hole-doped and electron-doped cuprates.
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The results of the reduction procedure may be summarized as follows:

e The singlet hopping is a second order effect which may be described as
interband ¢ = j single-particle jumps from the upper to the lower energy
subband.

e The GMFA superconducting pairing is a second order effect, the lowest
order contribution to which originates in interband hopping correlating the
annihilation (creation) of spin pairs at neighbouring lattice sites ¢ and j
within that energy subband which crosses the Fermi level.

The derivation of the most general and simplest possible expressions of the
frequency matrix and of the GMFA-GF matrix in the (q, w)-representation enables
reliable numerical investigation of the consequences coming from the adjustable
parameters of the model (the degree of hole/electron doping, the energy gap A,
the hopping parameters).

Another open question of the GF approach to the solution of the present
model is the use of the Hubbard operator algebra to get rigorous derivation and
simplification of the Dyson equation of the complete Green function. As shown
previously in [12], the self-energy corrections induce a spin fluctuation d-wave
pairing originating in kinematic interaction in the second order.

These investigations are underway and results will be reported in a forthcom-
ing paper.
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