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† ¡¨Í±¨° Œ.‚. E4-2007-103
�·Ö³μ¥ ¢ÒÎ¨¸²¥´¨¥ ¢¥·μÖÉ´μ¸É¨ ¨μ´¨§ Í¨¨ ¶¨μ´¨Ö ¢ ³¨Ï¥´¨

–¥²ÓÕ Ô±¸¶¥·¨³¥´É  DIRAC, ¶·μ¢μ¤¨³μ£μ ¢ CERN, Ö¢²Ö¥É¸Ö ¨§³¥·¥´¨¥
¢·¥³¥´¨ ¦¨§´¨ ¶¨μ´¨Ö (π+π−- Éμ³ ). ‚·¥³Ö ¦¨§´¨ ¶¨μ´¨Ö μ¶·¥¤¥²Ö¥É¸Ö  ´-
´¨£¨²ÖÍ¨¥°  Éμ³  ¢ ·¥§Ê²ÓÉ É¥ § ·Ö¤μ¢μ-μ¡³¥´´μ£μ ¶·μÍ¥¸¸  π+π− → π0π0.
‚ÒÎ¨¸²¥´¨Ö ¢ · ³± Ì ±¨· ²Ó´μ° É¥μ·¨¨ ¢μ§³ÊÐ¥´¨° ¶·¥¤¸± §Ò¢ ÕÉ §´ Î¥´¨¥
¢·¥³¥´¨ ¦¨§´¨ ¶¨μ´¨Ö ¢ μ¸´μ¢´μ³ ¸μ¸ÉμÖ´¨¨ ¸ ¢Ò¸μ±μ° ÉμÎ´μ¸ÉÓÕ: τ1S =
(2,9 ± 0,1) · 10−15 ¸. �±¸¶¥·¨³¥´É ²Ó´Ò° ³¥Éμ¤ μ¸´μ¢ ´ ´  ¢Ò¤¥²¥´¨¨ π+π−-
¶ ·, ¢μ§´¨±Ï¨Ì ¢ ·¥§Ê²ÓÉ É¥ ¨μ´¨§ Í¨¨ (· §¢ ² ) ¶¨μ´¨Ö ¢ ³¨Ï¥´¨, ¨§ ¸¶¥±É· 
¶¨μ´´ÒÌ ¶ · ¸ ³ ²Ò³ μÉ´μ¸¨É¥²Ó´Ò³ ¨³¶Ê²Ó¸μ³ ¢ ¸¨¸É¥³¥ Í¥´É·  ³ ¸¸. �¨-
μ´¨¨, ·μ¦¤¥´´Ò¥ ¢ ¶·μÉμ´-Ö¤¥·´ÒÌ ¸Éμ²±´μ¢¥´¨ÖÌ, μ¡² ¤ ÕÉ ·¥²ÖÉ¨¢¨¸É¸±¨³¨
¸±μ·μ¸ÉÖ³¨ (γ > 10). �·¨ § ¤ ´´ÒÌ ¨³¶Ê²Ó¸¥ ¶¨μ´¨Ö ¨ Éμ²Ð¨´¥ ³¨Ï¥´¨ ¢¥·μÖÉ-
´μ¸ÉÓ ¨μ´¨§ Í¨¨ ¶¨μ´¨Ö ¢ ³¨Ï¥´¨ Ö¢²Ö¥É¸Ö μ¤´μ§´ Î´μ° ËÊ´±Í¨¥° ¥£μ ¢·¥³¥´¨
¦¨§´¨, ÎÉμ ¶μ§¢μ²Ö¥É μ¶·¥¤¥²¨ÉÓ ¢·¥³Ö ¦¨§´¨ ¶¨μ´¨Ö ¨§ Ô±¸¶¥·¨³¥´É ²Ó´μ£μ
§´ Î¥´¨Ö ¢¥·μÖÉ´μ¸É¨ ¨μ´¨§ Í¨¨. ‚¶¥·¢Ò¥ ¶·μ¨§¢¥¤¥´μ ¶·Ö³μ¥ (μ¸´μ¢ ´´μ¥ ´ 
¸¥Î¥´¨ÖÌ ¨μ´¨§ Í¨¨) ¢ÒÎ¨¸²¥´¨¥ ¢¥·μÖÉ´μ¸É¨ ¨μ´¨§ Í¨¨ ¶¨μ´¨Ö ¢ ¢¥Ð¥¸É¢¥ ³¨-
Ï¥´¨.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ Ö¤¥·´ÒÌ ¶·μ¡²¥³ ¨³. ‚.�. „¦¥²¥¶μ¢ 
�ˆŸˆ.
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Zhabitsky M. V. E4-2007-103
Direct Calculation of the Probability of Pionium Ionization in the Target

The goal of the DIRAC experiment at CERN is the lifetime measurement of
pionium (π+π− atom). Its lifetime is mainly deˇned by the charge-exchange process
π+π− → π0π0. Value of the lifetime in the ground state is predicted in the
framework of Chiral Perturbation Theory (ChPT) with high precision: τ1S = (2.9±
0.1) · 10−15 s. The method used by DIRAC is based on the analysis of π+π−-pairs
spectra with small relative momenta in their center-of-mass system in order to ˇnd
out signal from pionium ionization (break-up) in the target. Pioniums are produced in
protonÄnuclei collisions and have relativistic velocities (γ > 10). For ˇxed values of
the pionium momentum and the target thickness the probability of pionium ionization
in the target depends on its lifetime in a unique way, thus the pionium lifetime can be
deduced from the experimentally deˇned probability of pionium ionization. Based
on ionization cross sections of pionium with target atoms we performed the ˇrst
direct calculation of the pionium ionization probability in the target.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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INTRODUCTION

Pionium is the hydrogen-like Coulomb bound system of two oppositely
charged pions. Its lifetime is determined by strong π+π− → π0π0 annihi-
lation, but it interacts mainly electromagnetically with the target atoms, while
propagating through the target material with the relativistic velocity. The DIRAC
experiment at CERN [1] detects π+π− pairs with low relative momenta in their
center-of-mass system. From the low-momentum part of the spectrum, the prob-
ability of the pionium ionization (break-up) in the target, which is the probability
for the pionium to be converted into an unbound π+π− pair on the exit of the
target, is determined. If the dependence of the pionium ionization probability in
the target as a function of its lifetime is established, this measurement will test in
a model-independent way the understanding of chiral symmetry breaking in QCD.

The main task of this work is the direct (based on ionization cross sections)
calculation of the pionium ionization probability in the target. The formalism
of pionium dynamics based on a set of the probabilistic kinetic equations is
reminded in Sec. 1. Section 2 is devoted to the direct calculation of the ionization
probability.

1. DYNAMICS OF A PIONIUM IN THE TARGET

The pionic atoms can be created in inelastic proton-nuclei collisions with the
probability given by [2]

dσA

d�PA

= (2π)3 |Ψ(0)|2 E

M

dσ0
s

d�p+d�p−

∣∣∣∣
�p+≈�p−

,

where
dσ0

s

d�p+d�p−
is the double inclusive cross section of π+π− pairs without

interaction in the ˇnal state with both pions produced either directly in hadronic
processes or through short-lived resonances. Production of the pionium atoms
with the angular momentum l > 0 is suppressed. The square of the S-wave
function modulus at zero separation can be approximated as follows [3]:

|Ψn0(0)|2 = (1 + δn)
∣∣ΨC

n0(0)
∣∣2 ,
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where ΨC
n0(0) is the pure Coulomb wave function of the π+π− atom at zero

distance and the correction factor (1 + δn) takes into account the effect of ˇnite-
size of the pion production region and the two-pion strong interaction in the ˇnal
state. It was found that this correction shifts the probability of ionization on per
mille level, therefore we will use pure Coulomb wave functions hereafter. For
them only nS states are nonzero in the origin

∣∣ΨC
nlm(0)

∣∣2 =

⎧⎨
⎩

(αmπ/2)3

πn3
if l = 0,

0 otherwise.

If we normalize probability of atom production to unity then the probability of
atom production in the |nlm〉 state reads

pnlm(0) =

∣∣ΨC
nlm(0)

∣∣2∑∞
k=1

∣∣ΨC
kS(0)

∣∣2 =
δl0

n3
∑∞

k=1 1/k3
=

δl0

n3ζ(3)
, (1)

p100(0) = 0.832, p200(0) = 0.104, p300(0) = 0.031.

After production atom can either annihilate (mainly through π+π− → π0π0

process∗) or electromagnetically interact with target atoms.
The partial decay width of the pionium in 1S state is [6]:

Γ2π0 =
2
9
α3

√
m2

π+ − m2
π0 −

1
4
m2

π+α2(a0
0 − a2

0)
2m2

π+(1 + δΓ),

δΓ = (5.8 ± 1.2) · 10−2.

The (a0
0 − a2

0) difference of the pionÄpion S-wave scattering lengths with isospin
0 and 2 have been calculated [7] within the framework of the standard chiral
perturbation theory (ChPT) [8]

a0
0 − a2

0 = (0.265 ± 0.004)m−1
π+.

This difference leads to the predicted value of the pionium lifetime in the ground
state

τ1S = (2.9 ± 0.1) · 10−15 s. (2)

Lifetime in nS states reads τnS = τ1S
|Ψ1S(0)|2
|ΨnS(0)|2 = τ1Sn3. Therefore the prob-

ability for a pionium with the laboratory momentum pA to annihilate per unit

∗Another annihilation channel π+π− → 2γ amounts only about 0.3% [4,5].
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length is

W anh
nlm =

1
λanh

nlm

=

⎧⎨
⎩

1
γβτn

=
2mπ

pAτ1Sn3
in nS states,

0 in other states.

While crossing the target a pionium electromagnetically interacts with target
atoms. As a result, π+π− atom can be either ionized or transit from the initial
bound state |nilimi〉 to another bound state |nf lfmf 〉 (excitation/deexcitation).
Hereafter we will denote initial and ˇnal bound states as |i〉 and |f〉, respectively.

The probability of ionization per unit length from the state |i〉 is given by

W ion
i =

1
λion

i

=
ρNA

A
σion

i ,

where ρ is the target density, A is its atomic weight, NA is the Avogadro constant
and σion

i is the ionization cross section.
The probability of a pionium excitation per unit length from the state |i〉 to

the ˇnal state |f〉 is given by

W f
i =

1

λf
i

=
ρNA

A
σf

i = W i
f ,

where σf
i is the discrete (boundÄbound) transition cross section.

The total inelastic cross section gives the probability of an atom to undergo
an inelastic electromagnetic interaction

σtot
i =

∑
f

σf
i + σion

i . (3)

Total cross sections can be calculated owing to the completeness of the eigenstates
of the Coulomb Hamiltonian.

Total and transition cross sections for any bound states were initially cal-
culated in the Born approximation with the static potential of target atoms [9].
Later a more accurate set of cross sections was derived which takes into account
relativistic effects and target excitations [10]. Moreover, in the latter work authors
calculated ionization cross sections for any initial bound state with n � 8 which
provides the possibility to perform direct calculation of the pionium ionization
probability in the target, which is the subject of the present work. Comparison
between different sets of cross sections was performed [11], where authors found
that uncertainties in most precise sets of cross sections for Ni target will cause
only 1% uncertainty in the pionium lifetime. Uncertainty due to the accuracy
of cross sections is expected to dominate precision of the ionization probability
dependence on the pionium lifetime.
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The dynamics of the pionium interaction with target atoms is supposed to be
described by a set of kinetic equations [9] using the probabilities pi(s) to ˇnd the
π+π− atom in the deˇnite quantum state |i〉 at a distance s from the production
point. This approach ignores any interference between different pionium bound
states. For low n most of interference effects are suppressed at typical pionium
momenta in DIRAC (3 ÷ 8 GeV/c) as the mean free path between pionium
inelastic interactions is usually longer than the formation time of atomic system
multiplied by its velocity. Nevertheless, even for low n some interference effects
can take place due to the accidental degeneracy of energy levels of hydrogen-like
atoms. This problem was considered in the framework of the density matrix
formalism [12]. It was found that the interference between quantum states with
small n does not change the result based on a set of probabilistic kinetic equations
(their difference is less than per mille).

Eigenstates of the Coulomb Hamiltonian form a countable set of discrete
levels. For numerical calculations we will take into account only levels with
principal quantum number n � nmax. For a given principal quantum number n
there are n2 states |nlm〉 with different orbital and magnetic quantum numbers.
We will denote the total number of discrete bound states taken for the calculation
as N . To make the system complete we introduce a cross section σu

i which stands
for the sum of transitions from state |i〉 to any discrete state with the principal
quantum number nf > nmax:

σu
i =

∑
f :nf >nmax

σf
i = σtot

i − σion
i −

∑
f :nf �nmax

σf
i .

It is straightforward to write the probability of pionium production in all bound
states above nmax:

pu(0) = 1 −
∑

i:ni�nmax

pi(0). (4)

Finally, we will write the system of kinetic equations in the matrix form

d

ds

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

. . .
pN

pu

pion

panh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

W 1
1 W 1

2 . . . W 1
N 0 0 0

W 2
1 W 2

2 . . . W 2
N 0 0 0

...
...

. . .
... 0 0 0

WN
1 WN

2 . . . WN
N 0 0 0

Wu
1 Wu

2 . . . Wu
N 0 0 0

W ion
1 W ion

2 . . . W ion
N 0 0 0

W anh
1 W anh

2 . . . W anh
N 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

. . .
pN

pu

pion

panh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Diagonal terms describe the total decrease of the level population

W i
i = −ρNA

A
σtot

i − W anh
i .
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System (5) is a system of linear ordinary differential equations with constant
coefˇcients. The rank of the matrix is N , with three low lines being a linear
combination of the ˇrst N lines. It is exactly solvable

pi(s) =
∑

k

ckα
(k)
i eλks, (6)

where λ1, . . . , λN are eigenvalues and α(k) their corresponding eigenvectors.
Symmetry of the upper left N -by-N corner guaranties that all its eigenvalues
are real [13]. Coefˇcients ck are ˇxed from initial conditions (1), (4). The
probability of pionium ionization at the distance s after the production point is
expressed through the solution (6)

pion(s) =
∑

k

ck

λk

(
eλks − 1

)∑
i

W ion
i α

(k)
i .

DIRAC uses very thin targets (their nuclear efˇciency is less than 10−3),
therefore atoms are produced nearly uniformly over the target thickness s0. Hence
the probability for a pionium to leave the target in the state |i〉 reads

Pi(s0) =
∑

k

ckα
(k)
i

1
λks0

(
eλks0 − 1

)
,

while the probability of ionization on the exit of the target is

Pion(s0) =
∑

k

ck

λk

(
1

λks0

(
eλks0 − 1

)
− 1

) ∑
i

W ion
i α

(k)
i . (7)

Expressions for the probability of annihilation Panh and for the probability Pu to
reach any excited state with n > nmax on the exit of the target have the same
form as (7) if one substitutes W ion

i with W anh
i and Wu

i , respectively.
In Table 1 we illustrate this solution as a function of nmax for a pionium

atom produced in 95 μm thick Ni target with the momentum pA = 4.6 GeV/c,
corresponding to the average laboratory momentum of produced pioniums in the
kinematic range of the DIRAC experiment. Eigenvalues were numerically found
by the appropriate function from LAPACK [14]. Here PA

dsc is the probability
for pionium to leave the target in a bound state with n � nmax. System of
equations (5) is constructed in a way that as soon as an atom reaches the state
with n > nmax it effectively quits from calculations and is kept intact, though in
reality it is expected to undergo further electromagnetic interactions, e.g., it can
be ionized or deexcited to the low-lying states. Therefore, PA

u is the probability
for atoms to reach states with n > nmax, which amounts to about 20%. This
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Table 1. Numerical solution with n > nmax states intact as a function of nmax

nmax P A
dsc P A

anh P A
ion P A

u

5 0.0928 0.4407 0.2438 0.2227
6 0.0937 0.4407 0.2586 0.2070
7 0.0943 0.4407 0.2715 0.1935
8 0.0947 0.4407 0.2828 0.1817

numerical value is in agreement with the earlier calculations [11] (Fig. 3, d).
Numerical precision of the above solution can be estimated from the inequality

∣∣1 − PA
dsc − PA

anh − PA
ion − PA

u

∣∣ < 1 · 10−12,

thus round-off errors do not affect the result.
As an atom transits to the state nf > ni its effective radius of electromagnetic

interactions grows and its characteristic ionization length is getting shorter

λion
|n>nmax,lm〉 < λion

|nmax=8,lm〉 ≈ 2 μm.

The target used in DIRAC is 95μm thick, therefore highly-excited atoms have a
chance to leave the target in a bound state only if they were created close to the
exit of the target. Otherwise these highly-excited atoms will be ionized. This
allows us to set the range for the ionization probability in the target:

0.2828 = PA
ion < Pion < PA

ion + PA
u = 0.4645. (8)

Here the upper bound corresponds to the case when all highly-excited atoms are
ionized, while the lower bound PA

ion is at least probability of ionization from states
with n � nmax.

From Table 1 one can conclude that above upper and lower bounds converge
slowly with increase of nmax and in this way it would be difˇcult to increase nmax

in order to achieve precision required by DIRAC (per cent level).

2. EVOLUTION OF HIGHLY-EXCITED STATES

Rather than trying to solve the system (5) directly we will modify it in
order to get the lower bound of the ionization probability by taking into account
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Fig. 1. min
l′m′

{
σion
|nl′m′〉

}
and max

l′m′

{
σion
|nl′m′〉

}
for different principal quantum numbers n

dynamics of highly-excited states with n > nmax:

d

ds

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

. . .
pN

pu

pion

panh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

W 1
1 W 1

2 . . . W 1
N W 1

u 0 0
W 2

1 W 2
2 . . . W 2

N W 2
u 0 0

...
...

. . .
...

... 0 0
WN

1 WN
2 . . . WN

N WN
u 0 0

Wu
1 Wu

2 . . . Wu
N Wu

u 0 0
W ion

1 W ion
2 . . . W ion

N W ion
u 0 0

W anh
1 W anh

2 . . . W anh
N W anh

u 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

. . .
pN

pu

pion

panh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Here

W ion
u =

ρNA

A
σion

nmax+1,min, σion
nmax+1,min = min

l′m′

{
σion
|nmax+1,l′m′〉

}

is the lower bound of the probability of ionization per unit length from any state
with n > nmax, because the ionization cross section tends to grow with increasing
of the principal quantum number n due to the corresponding expansion of the
atomic radius. The minimal and maximal values of the ionization cross section for
different principal quantum numbers are drawn in Fig. 1. To ˇnd the lower bound
of the ionization probability, further we require all probabilities of ionization per
unit length from any state |nlm〉 to be smaller than W ion

u :

W ion
|nlm〉,min =

ρNA

A
σion
|nlm〉,min, σion

|nlm〉,min = min
{

σion
|nlm〉, σion

nmax+1,min

}
.

The diagonal term W i
i , which describes the level depopulation, is changed ac-

cordingly to fulˇll (3).

7



Upper bound of the probability of deexcitation per unit length from all states
with n > nmax to a state f with nf � nmax is obtained from the following
inequality:

∑
i:ni>nmax

W f
i pi <

∑
i:ni>nmax

W f
i ·

∑
i:ni>nmax

pi = W f
u pu = Wu

f pu.

Finally the diagonal term for the sum of discrete states with n > nmax is

Wu
u = −ρNA

A
σion

nmax+1,min − W anh
u −

∑
f :nf �nmax

W f
u ,

where W anh
u =

2mπ

pAτ1S(nmax + 1)3
is the upper bound of the probability for a

pionium to annihilate from all states with n > nmax per unit length. The rank
of the new system is N+1. The system (9) is constructed in the way that
ionization is underestimated and all competitive processes including deexcitation
from high n states (thus transitions to bound states with even lower ionization)
are overestimated, therefore the solution is the mathematical lower bound of the
probability of ionization. Numerical results for different nmax are presented in
Table 2.

Table 2. Numerical solution for the lower bound of Pion as a function of nmax

nmax P B
dsc P B

anh P B
ion P B

u

5 0.1109 0.4416 0.4468 0.00067
6 0.1068 0.4411 0.4517 0.00030
7 0.1041 0.4409 0.4548 0.00015
8 0.1023 0.4408 0.4567 0.00008

Upper (8) and lower bounds effectively squeeze the solution (Fig. 2), for
nmax = 8 they are

0.4567 = PB
ion < Pion < PA

ion + PA
u = 0.4645,

Pmax
ion − Pmin

ion

2Pion
≈ 0.8 · 10−2. (10)

Precision of the above calculated value of the pionium ionization probability in the
target is comparable to the ∼ 1% uncertainties in the Pion value due to precision
of the corresponding electromagnetic cross sections [11].

Upper and lower bounds of the probability of pionium ionization in the
target as a function of its lifetime in the ground state is shown in Fig. 3. The
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Fig. 2. Upper and lower bounds of Pion as a function of nmax, ˇtted by aeαnmax +c functions
to guide the eye

Fig. 3. Upper and lower bounds of Pion as a function of the pionium lifetime in the ground
state

corresponding uncertainties are shown by dotted lines around the value of the
pionium lifetime (2) predicted by theory. The DIRAC collaboration reported
the measured value of Pion = 0.452+0.025

−0.039 [15], based on part of the collected
data. While further analysis will reduce uncertainties of the experimental result,
uncertainties of the solution (10) are expected to be within precision, required by
DIRAC. Range can be further shrunk by extrapolation as shown in Fig. 2.

We have to emphasize that upper and lower bounds of the ionization proba-
bility squeeze the solution with required precision due to the fact, that for atoms
with the principal quantum number n > 8 the characteristic ionization length is

9



Fig. 4. Upper and lower bounds of Pion as a function of nmax for 10 μm thick Ni target

less than 2 μm, which is much shorter than the target thickness of 95 μm. If one
selects very thin target (e.g., 10 μm thick Ni) then the upper and lower bounds
will show worse convergence (Fig. 4).

CONCLUSIONS

We derived a mathematical approach to solve a system of kinetic equations,
which describes evolution of relativistic π+π− atoms propagating through the
target. In this approach we reduce the system of kinetic equations, which formally
contains inˇnite number of equations, to the ˇnite set of equations, which is solved
exactly. The solution represents lower and upper bounds for the probability
of pionium ionization in the target. These lower and upper bounds effectively
squeeze the solution to the value of the probability of ionization with 1% precision,
which is within requirements of the DIRAC experiment. Thus the ˇrst direct
(based on ionization cross sections) calculation of the probability of ionization
has been performed. We conˇrm that the contribution of highly-excited states
(with the principal quantum number n > 8) to the probability of ionization is
signiˇcant (> 1/3).

Acknowledgments. The author would like to thank L. Afanasyev, L. Ne-
menov, A. Tarasov and V. Yazkov for many discussions about the problem.
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