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1 Introduction

Killing–Yano tensors (KY) were introduced by Yano [1] from pure mathematical
point of view [2] and the physical significance of these tensors was obtained by
Gibbons and Holten [3]. A KY is an antisymmetric tensor define as

Dλfµν + Dµfλν = 0 , (1)

where Dλ represents the covariant derivative. KY tensors of rank two are related
to non-generic supersymmetries of the spinning particle model (see for more details
Ref. [3]) and the geometrical duality depends on the existence of these tensors
[4, 5]. Since KY tensors were introduced there were many attempts to applied
them in various areas [6, 7, 8, 9, 10].

In this paper we made a link between the surface terms [11] and KY tensors
and we review the results presented in [13].

The starting point is a given free Lagrangian L(q̇i, qi) admitting a set of con-
stants of motion denoted by Li, i = 1, · · · , 3. If we add the components of the
angular momentum corresponding to L, the extended Lagrangian [12]

L′ = L + λ̇iLi , i = 1, · · · , 3 (2)

becomes L′ = 1
2aij q̇

iq̇j . In this context the second term in (2) is a total time
derivative and the Lagrangians L and L′ are equivalent.We mention that the matrix
aij is symmetric by construction. The next step is to find whether aij is singular
or not. Assuming that aij is a singular n × n matrix of rank n − 1 we obtain
non-singular symmetric matrices of order (n − 1) × (n − 1), where n will be 3, 5
and 6. Finally we consider the obtained matrices as metrics on the extended space
and we investigate their Killing vectors and KY tensors.
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2 Angular momentum and Killing−Yano tensors

The Lagrangian to start with is

L′ = 1
2

(

ẋ2 + ẏ2
)

+ λ̇3

(

xẏ − yẋ
)

, (3)

which in the compact notation becomes L′ = 1
2aij q̇

iq̇j . Here aij is given by

aij =





1 0 −y

0 1 x

−y x 0



 . (4)

The metric (4) admits the Killing vector V = (y,−x, 0).
Solving (1) for (4) we obtained the following KY tensor

f12 = 0 , f23 = −Cx
√

x2 + y2 , f13 = Cy
√

x2 + y2 , (5)

where C represents a constant [13].
As it known a KY tensor of rank two generates a Killing tensor as

Kµν = fµλfλ
ν . (6)

In our case, using (5) and (6) a Killing tensor is constructed as

Kij =





y2 −xy −y(y2 + x2)
−xy x2 x(x2 + y2)

−y(y2 + x2) x(x2 + y2) 0



 . (7)

The second step is to add two components of the angular momentum to a free,
three–dimensional Lagrangian. The corresponding extended Lagrangian becomes

L′ = 1
2

(

ẋ2 + ẏ2 + ż2
)

+ λ̇1

(

yż − zẏ
)

+ λ̇2

(

zẋ − xż
)

(8)

and from (8) we obtain aij as the following non-singular matrix

aij =













1 0 0 0 z

0 1 0 −z 0
0 0 1 y −x

0 −z y 0 0
z 0 −x 0 0













. (9)

The metric (9) admits three Killing vectors as

V1 = (y,−x, 0, 0, 0) , V2 = (0,−z, y, 0, 0) , V3 = (z, 0,−x, 0, 0) . (10)

For metric (10) KY tensors components are as follows

f15 = −Gxy , f14 = G(z2 + y2) ,

f24 = −Gxy , f34 = −Gxz,

f25 = G(x2 + z2) , f35 =
−Gxzy

x
,

f12 = Cz , f13 = −Cy ,

(11)
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others zero. Here C and G are constants. The corresponding Killing tensor has the
following form

K =













G(−2C + G)(z2 + y2) GDxy GDzx 0 G2r2z

GDxy −GD(x2 + z2) GDzy −r2zG2 0
GDzx GDzy −GD(y2 + x2) G2r2y −G2r2x

0 −G2zr2 G2yr2 0 0
G2zr2 0 −G2xr2 0 0













.

(12)
where D = 2C + G and r2 = x2 + y2 + z2.

If we add all angular momentum components to the Lagrangian of the free
particle in three–dimensions, the extended Lagrangians L′ is given by

L′ = 1
2

(

ẋ2 + ẏ2 + ż2
)

+ λ̇1

(

yż − zẏ
)

+ λ̇2

(

zẋ − xż
)

+ λ̇3

(

xẏ − yẋ
)

. (13)

In compact form (13) has the form L′ = 1
2aij q̇

iq̇j . Here aij is singular matrix given
by

aij =

















1 0 0 0 z −y

0 1 0 −z 0 x

0 0 1 y −x 0
0 −z y 0 0 0
z 0 −x 0 0 0
−y x 0 0 0 0

















. (14)

Using the fact that the rank of (14) is 5 we obtained three non-singular sym-
metric matrices corresponding to three non-zero minors. The first one is given by
(9) and the other two are as

b(2)
µν =













1 0 0 0 −y

0 1 0 −z x

0 0 1 y 0
0 −z y 0 0
−y x 0 0 0













(15)

and

b(3)
µν =













1 0 0 z −y

0 1 0 0 x

0 0 1 −x 0
z 0 −x 0 0
−y x 0 0 0













. (16)

By direct calculations [13] we obtain that (15) and (16) admit three Killing vectors
given by (10) and a KY tensor possessing the following non-zero components

f12 = z , f13 = −y , f23 = x . (17)
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3 Induced geometries on a sphere

The motion on a sphere admits four constants of motion, the Hamiltonian and
three components of the angular momentum [14]. The aim of this section is to use
the surface terms and to generate four–dimensional manifolds. The Lagrangian to
start with is given by

L′ =
1

2

(

1 +
x2

u

)

ẋ2 +
1

2

(

1 +
y2

u

)

ẏ2 +
xy

u
ẋẏ −

xy
√

u
λ̇1ẋ +

(

x2

√
u

+
√

u

)

λ̇2ẋ −

−

(

y2

√
u

+
√

u

)

λ̇1ẏ +
xy
√

u
λ̇2ẏ + xλ̇3ẏ − yλ̇3ẋ , (18)

where u = 1 − x2 − y2. Using (18) we identify the singular matrix aij as

aij =





























1 +
x2

u

xy

u
−

xy
√

u

x2

√
u

+
√

u −y

xy

u
1 +

y2

u
−

y2

√
u
−
√

u
xy
√

u
x

−
xy
√

u
−

y2

√
u
−
√

u 0 0 0

x2

√
u

+
√

u
xy
√

u
0 0 0

−y x 0 0 0





























. (19)

Using the fact that (19) is a singular matrix of rank 4 we identify three sym-
metric minors of order four. If we consider these minors as a metric we observed
that they are not conformaly flat but their scalar curvatures are zero.

The first metric is given by

g(1)
µν =





















1 +
x2

u

xy

u

√
u +

x2

√
u

−y

xy

u
1 +

y2

u

xy
√

u
x

√
u +

x2

√
u

xy
√

u
0 0

−y x 0 0





















. (20)

The Killing vectors of (20) are given by [13]

V1 = (y,−x, 0, 0) ,

V2 =

(

√

1 − x2 − y2 +
x2

1 − x2 − y2
,

xy

1 − x2 − y2
, 0, 0

)

, (21)

V3 =

(

−
xy

1− x2 − y2
,−

√

1 − x2 − y2 −
y2

1− x2 − y2
, 0, 0

)

.
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The next step is to investigate its KY tensors. Solving (1) we obtain the fol-
lowing set of solutions:

a. One solution is f21 =
C1

√

1 − x2 − y2
, others zero.

b. Two-by-two solution has the form: f31 = f42 = C.

c. Three by three solution is f21 =
C1

√

−1 + x2 + y2
and f31 = f42 = C, where

C and C1 are constants.
From (18) another two metrics can be identified as

g(2)
µν =





















1 +
x2

u

xy

u
−

xy
√

u
−y

xy

u
1 +

y2

u
−
√

u −
y2

√
u

x

−
xy
√

u
−
√

u −
y2

√
u

0 0

−y x 0 0





















(22)

and

g(3)
µρ =

























1 +
x2

u

xy

u
−

xy
√

u

x2

√
u

+
√

u

xy

u
1 +

y2

u
−

y2

√
u
−
√

u
xy
√

u

−
xy
√

u
−

y2

√
u
−
√

u 0 0

x2

√
u

+
√

u
xy
√

u
0 0

























. (23)

By direct calculations we obtained that (22) and (23) have the same Killing vector
as in (21). Solving (1) for (22) and (23) we find one non-zero component of KY
tensor as follows

f21 =
C1

√

1 − x2 − y2
. (24)

The author would like to thank the organizers of this conference for giving him the op-

portunity to attend this meeting.
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