Non-generic symmetries and surface terms

Dumitru Baleanu
Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, University of Cankaya, Ankara 06530, Turkey
and
Institute of Space Sciences, P.O.BOX, MG-23, R 76900, Magurele-Bucharest, Romania
Integrable geometries were obtained by adding a total time derivative involving the components of the angular momentum to a given free Lagrangian. The motion on a sphere and its induced geometries are examined in details.

PACS: 02.40.-ky.
Key words: Killing-Yano tensors, non-generic symmetries, surface terms

1 Introduction

Killing-Yano tensors (KY) were introduced by Yano [1] from pure mathematical point of view [2] and the physical significance of these tensors was obtained by Gibbons and Holten [3]. A KY is an antisymmetric tensor define as

$$
\begin{equation*}
D_{\lambda} f_{\mu \nu}+D_{\mu} f_{\lambda \nu}=0 \tag{1}
\end{equation*}
$$

where D_{λ} represents the covariant derivative. KY tensors of rank two are related to non-generic supersymmetries of the spinning particle model (see for more details Ref. [3]) and the geometrical duality depends on the existence of these tensors $[4,5]$. Since KY tensors were introduced there were many attempts to applied them in various areas $[6,7,8,9,10]$.

In this paper we made a link between the surface terms [11] and KY tensors and we review the results presented in [13].

The starting point is a given free Lagrangian $L\left(\dot{q}^{i}, q^{i}\right)$ admitting a set of constants of motion denoted by $L_{i}, i=1, \cdots, 3$. If we add the components of the angular momentum corresponding to L, the extended Lagrangian [12]

$$
\begin{equation*}
L^{\prime}=L+\dot{\lambda}^{i} L_{i}, \quad i=1, \cdots, 3 \tag{2}
\end{equation*}
$$

becomes $L^{\prime}=\frac{1}{2} a_{i j} \dot{q}^{i} \dot{q}^{j}$. In this context the second term in (2) is a total time derivative and the Lagrangians L and L^{\prime} are equivalent. We mention that the matrix $a_{i j}$ is symmetric by construction. The next step is to find whether $a_{i j}$ is singular or not. Assuming that $a_{i j}$ is a singular $n \times n$ matrix of rank $n-1$ we obtain non-singular symmetric matrices of order $(n-1) \times(n-1)$, where n will be 3,5 and 6 . Finally we consider the obtained matrices as metrics on the extended space and we investigate their Killing vectors and KY tensors.

2 Angular momentum and Killing-Yano tensors

The Lagrangian to start with is

$$
\begin{equation*}
L^{\prime}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\dot{\lambda}_{3}(x \dot{y}-y \dot{x}) \tag{3}
\end{equation*}
$$

which in the compact notation becomes $L^{\prime}=\frac{1}{2} a_{i j} \dot{q}^{i} \dot{q}^{j}$. Here $a_{i j}$ is given by

$$
a_{i j}=\left(\begin{array}{ccc}
1 & 0 & -y \tag{4}\\
0 & 1 & x \\
-y & x & 0
\end{array}\right)
$$

The metric (4) admits the Killing vector $V=(y,-x, 0)$.
Solving (1) for (4) we obtained the following KY tensor

$$
\begin{equation*}
f_{12}=0, \quad f_{23}=-C x \sqrt{x^{2}+y^{2}}, \quad f_{13}=C y \sqrt{x^{2}+y^{2}} \tag{5}
\end{equation*}
$$

where C represents a constant [13].
As it known a KY tensor of rank two generates a Killing tensor as

$$
\begin{equation*}
K_{\mu \nu}=f_{\mu \lambda} f_{\nu}^{\lambda} \tag{6}
\end{equation*}
$$

In our case, using (5) and (6) a Killing tensor is constructed as

$$
K_{i j}=\left(\begin{array}{ccc}
y^{2} & -x y & -y\left(y^{2}+x^{2}\right) \tag{7}\\
-x y & x^{2} & x\left(x^{2}+y^{2}\right) \\
-y\left(y^{2}+x^{2}\right) & x\left(x^{2}+y^{2}\right) & 0
\end{array}\right)
$$

The second step is to add two components of the angular momentum to a free, three-dimensional Lagrangian. The corresponding extended Lagrangian becomes

$$
\begin{equation*}
L^{\prime}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\dot{\lambda}_{1}(y \dot{z}-z \dot{y})+\dot{\lambda}_{2}(z \dot{x}-x \dot{z}) \tag{8}
\end{equation*}
$$

and from (8) we obtain $a_{i j}$ as the following non-singular matrix

$$
a_{i j}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & z \tag{9}\\
0 & 1 & 0 & -z & 0 \\
0 & 0 & 1 & y & -x \\
0 & -z & y & 0 & 0 \\
z & 0 & -x & 0 & 0
\end{array}\right)
$$

The metric (9) admits three Killing vectors as

$$
\begin{equation*}
V_{1}=(y,-x, 0,0,0), \quad V_{2}=(0,-z, y, 0,0), \quad V_{3}=(z, 0,-x, 0,0) \tag{10}
\end{equation*}
$$

For metric (10) KY tensors components are as follows

$$
\begin{array}{ll}
f_{15}=-G x y, & f_{14}=G\left(z^{2}+y^{2}\right) \\
f_{24}=-G x y, & f_{34}=-G x z \\
f_{25}=G\left(x^{2}+z^{2}\right), & f_{35}=\frac{-G x z y}{x} \tag{11}\\
f_{12}=C z, & f_{13}=-C y
\end{array}
$$

others zero. Here C and G are constants. The corresponding Killing tensor has the following form

$$
K=\left(\begin{array}{ccccc}
G(-2 C+G)\left(z^{2}+y^{2}\right) & G D x y & G D z x & 0 & G^{2} r^{2} z \tag{12}\\
G D x y & -G D\left(x^{2}+z^{2}\right) & G D z y & -r^{2} z G^{2} & 0 \\
G D z x & G D z y & -G D\left(y^{2}+x^{2}\right) & G^{2} r^{2} y & -G^{2} r^{2} x \\
0 & -G^{2} z r^{2} & G^{2} y r^{2} & 0 & 0 \\
G^{2} z r^{2} & 0 & -G^{2} x r^{2} & 0 & 0
\end{array}\right)
$$

where $D=2 C+G$ and $r^{2}=x^{2}+y^{2}+z^{2}$.
If we add all angular momentum components to the Lagrangian of the free particle in three-dimensions, the extended Lagrangians L^{\prime} is given by

$$
\begin{equation*}
L^{\prime}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\dot{\lambda}_{1}(y \dot{z}-z \dot{y})+\dot{\lambda}_{2}(z \dot{x}-x \dot{z})+\dot{\lambda}_{3}(x \dot{y}-y \dot{x}) \tag{13}
\end{equation*}
$$

In compact form (13) has the form $L^{\prime}=\frac{1}{2} a_{i j} \dot{q}^{i} \dot{q}^{j}$. Here $a_{i j}$ is singular matrix given by

$$
a_{i j}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & z & -y \tag{14}\\
0 & 1 & 0 & -z & 0 & x \\
0 & 0 & 1 & y & -x & 0 \\
0 & -z & y & 0 & 0 & 0 \\
z & 0 & -x & 0 & 0 & 0 \\
-y & x & 0 & 0 & 0 & 0
\end{array}\right)
$$

Using the fact that the rank of (14) is 5 we obtained three non-singular symmetric matrices corresponding to three non-zero minors. The first one is given by (9) and the other two are as

$$
b_{\mu \nu}^{(2)}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -y \tag{15}\\
0 & 1 & 0 & -z & x \\
0 & 0 & 1 & y & 0 \\
0 & -z & y & 0 & 0 \\
-y & x & 0 & 0 & 0
\end{array}\right)
$$

and

$$
b_{\mu \nu}^{(3)}=\left(\begin{array}{ccccc}
1 & 0 & 0 & z & -y \tag{16}\\
0 & 1 & 0 & 0 & x \\
0 & 0 & 1 & -x & 0 \\
z & 0 & -x & 0 & 0 \\
-y & x & 0 & 0 & 0
\end{array}\right)
$$

By direct calculations [13] we obtain that (15) and (16) admit three Killing vectors given by (10) and a KY tensor possessing the following non-zero components

$$
\begin{equation*}
f_{12}=z, \quad f_{13}=-y, \quad f_{23}=x \tag{17}
\end{equation*}
$$

3 Induced geometries on a sphere

The motion on a sphere admits four constants of motion, the Hamiltonian and three components of the angular momentum [14]. The aim of this section is to use the surface terms and to generate four-dimensional manifolds. The Lagrangian to start with is given by

$$
\begin{align*}
L^{\prime}= & \frac{1}{2}\left(1+\frac{x^{2}}{u}\right) \dot{x}^{2}+\frac{1}{2}\left(1+\frac{y^{2}}{u}\right) \dot{y}^{2}+\frac{x y}{u} \dot{x} \dot{y}-\frac{x y}{\sqrt{u}} \dot{\lambda}_{1} \dot{x}+\left(\frac{x^{2}}{\sqrt{u}}+\sqrt{u}\right) \dot{\lambda}_{2} \dot{x}- \\
& -\left(\frac{y^{2}}{\sqrt{u}}+\sqrt{u}\right) \dot{\lambda}_{1} \dot{y}+\frac{x y}{\sqrt{u}} \dot{\lambda}_{2} \dot{y}+x \dot{\lambda}_{3} \dot{y}-y \dot{\lambda}_{3} \dot{x} \tag{18}
\end{align*}
$$

where $u=1-x^{2}-y^{2}$. Using (18) we identify the singular matrix $a_{i j}$ as

$$
a_{i j}=\left(\begin{array}{ccccc}
1+\frac{x^{2}}{u} & \frac{x y}{u} & -\frac{x y}{\sqrt{u}} & \frac{x^{2}}{\sqrt{u}}+\sqrt{u} & -y \tag{19}\\
\frac{x y}{u} & 1+\frac{y^{2}}{u} & -\frac{y^{2}}{\sqrt{u}}-\sqrt{u} & \frac{x y}{\sqrt{u}} & x \\
-\frac{x y}{\sqrt{u}} & -\frac{y^{2}}{\sqrt{u}}-\sqrt{u} & 0 & 0 & 0 \\
\frac{x^{2}}{\sqrt{u}}+\sqrt{u} & \frac{x y}{\sqrt{u}} & 0 & 0 & 0 \\
-y & x & 0 & 0 & 0
\end{array}\right) .
$$

Using the fact that (19) is a singular matrix of rank 4 we identify three symmetric minors of order four. If we consider these minors as a metric we observed that they are not conformaly flat but their scalar curvatures are zero.

The first metric is given by

$$
g_{\mu \nu}^{(1)}=\left(\begin{array}{cccc}
1+\frac{x^{2}}{u} & \frac{x y}{u} & \sqrt{u}+\frac{x^{2}}{\sqrt{u}} & -y \tag{20}\\
\frac{x y}{u} & 1+\frac{y^{2}}{u} & \frac{x y}{\sqrt{u}} & x \\
\sqrt{u}+\frac{x^{2}}{\sqrt{u}} & \frac{x y}{\sqrt{u}} & 0 & 0 \\
-y & x & 0 & 0
\end{array}\right)
$$

The Killing vectors of (20) are given by [13]

$$
\begin{align*}
& V_{1}=(y,-x, 0,0) \\
& V_{2}=\left(\sqrt{1-x^{2}-y^{2}}+\frac{x^{2}}{1-x^{2}-y^{2}}, \frac{x y}{1-x^{2}-y^{2}}, 0,0\right) \tag{21}\\
& V_{3}=\left(-\frac{x y}{1-x^{2}-y^{2}},-\sqrt{1-x^{2}-y^{2}}-\frac{y^{2}}{1-x^{2}-y^{2}}, 0,0\right)
\end{align*}
$$

The next step is to investigate its KY tensors. Solving (1) we obtain the following set of solutions:
a. One solution is $f_{21}=\frac{C_{1}}{\sqrt{1-x^{2}-y^{2}}}$, others zero.
b. Two-by-two solution has the form: $f_{31}=f_{42}=C$.
c. Three by three solution is $f_{21}=\frac{C_{1}}{\sqrt{-1+x^{2}+y^{2}}}$ and $f_{31}=f_{42}=C$, where C and C_{1} are constants.

From (18) another two metrics can be identified as

$$
g_{\mu \nu}^{(2)}=\left(\begin{array}{cccc}
1+\frac{x^{2}}{u} & \frac{x y}{u} & -\frac{x y}{\sqrt{u}} & -y \tag{22}\\
\frac{x y}{u} & 1+\frac{y^{2}}{u} & -\sqrt{u}-\frac{y^{2}}{\sqrt{u}} & x \\
-\frac{x y}{\sqrt{u}} & -\sqrt{u}-\frac{y^{2}}{\sqrt{u}} & 0 & 0 \\
-y & x & 0 & 0
\end{array}\right)
$$

and

$$
g_{\mu \rho}^{(3)}=\left(\begin{array}{cccc}
1+\frac{x^{2}}{u} & \frac{x y}{u} & -\frac{x y}{\sqrt{u}} & \frac{x^{2}}{\sqrt{u}}+\sqrt{u} \tag{23}\\
\frac{x y}{u} & 1+\frac{y^{2}}{u} & -\frac{y^{2}}{\sqrt{u}}-\sqrt{u} & \frac{x y}{\sqrt{u}} \\
-\frac{x y}{\sqrt{u}} & -\frac{y^{2}}{\sqrt{u}}-\sqrt{u} & 0 & 0 \\
\frac{x^{2}}{\sqrt{u}}+\sqrt{u} & \frac{x y}{\sqrt{u}} & 0 & 0
\end{array}\right) .
$$

By direct calculations we obtained that (22) and (23) have the same Killing vector as in (21). Solving (1) for (22) and (23) we find one non-zero component of KY tensor as follows

$$
\begin{equation*}
f_{21}=\frac{C_{1}}{\sqrt{1-x^{2}-y^{2}}} \tag{24}
\end{equation*}
$$

The author would like to thank the organizers of this conference for giving him the opportunity to attend this meeting.

References

[1] K. Yano: Ann. Math. 55 (1952) 328.
[2] D. Kramer, H. Stephani, E. Herlt and M. MacCallum: Exact Solutions of Einstein's Field Equations, Cambridge University Press, Cambridge, 1980.
[3] G.W. Gibbons, R.H. Rietdijk and J.W. van Holten: Nucl. Phys. B 404 (1993) 42.
[4] R.H. Rietdijk and J.W. van Holten: Nuc. Phys. B 472 (1996) 427.
[5] F. Hinterleitner: Ann. Phys. 271 (1999) 23.

D. Baleanu: Non-generic symmetries and surface terms

[6] B.Carter and R.G. McLenaghan: Phys. Rev. D 19 (1979) 1093.
[7] C.D. Collinson: Int. J. Theor. Phys. 15 (1976) 311.
[8] B. Carter and R.G. McLenaghan: Phys. Rev. D 19 (1979) 1093.
[9] R. Penrose: Ann. NY Acad. Sci. 224 (1973) 125;
R. Floys: The dynamics of Kerr fields, Ph. D. Thesis, London, 1973.
[10] D. Baleanu: Nuovo Cimento B 114 (1999) 1065.
[11] M. Henneaux, C. Teitelboim and J.D. Vergara: Nucl. Phys. B 387 (1991) 391.
[12] Y. Güler, D. Baleanu and M. Cenk: Nuovo Cimento B 118 (2003) 293.
[13] D.Baleanu, Ö.Defterli: Czech. Journ. Phys. 54 (2004) 157.
[14] T.L. Curtright and C.K. Zachos: New J. Phys. 4 (2002) 83.

