
Algebraic solutions for Schrödinger equations with

time−varying potentials and time−dependent boundary

conditions

B.L. Burrows

Staffordshire University Stafford UK

M. Cohen

The Hebrew University Jerusalem Israel

Lie algebraic methods, which have been used widely for stationary states of quantum
mechanical systems are extended here to treat time–dependent problems. Difficulties may
arise at points where the potential is discontinuous or has discontinuous derivatives and
from certain imposed boundary conditions. The simplicity and elegance of the usual
algebraic methods can be retained for such problems by redefining the domain of the
operators using techniques developed by Lighthill to introduce generalized functions.

We treat a model double–well subject to time–varying external fields as well as prob-
lems with time–dependent boundary conditions.

PACS : 81.R.15

Key words: algebraic solutions, time–dependent

Lie algebraic methods, which have been used widely for stationary states of
quantum mechanical systems are extended here to treat time–dependent problems.
Difficulties may arise at points where the potential is discontinuous or has discon-
tinuous derivatives and from certain imposed boundary conditions. The simplicity
and elegance of the usual algebraic methods can be retained for such problems by
redefining the domain of the operators using techniques developed by Lighthill to
introduce generalized functions.

As examples of this technique we treat a model double–well subject to time–
varying external fields as well as problems with time–dependent boundary condi-
tions.

Consider the usual time–dependent Schrödinger equation

i
∂ψ

∂t
= H(x, t)ψ , (1)

where

H(x, t) =

n
∑

j=1

aj(t)Lj (2)

and Lj are operators in some Lie algebra and in general [Lj , H ] 6= 0. For some
particular operator in Lj , L say, we may make the transformation

ψ = exp
(

α(t)L
)

φ = Uφ , (3)
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where we seek to choose α(t) in order to simplify (1). We have

i
∂Uφ

∂t
= HUφ , (4)

which implies

U−1

(

i
∂U

∂t
φ+ iU

∂φ

∂t

)

=
(

U−1HU
)

φ . (5)

Since
∂U

∂t
=

dα

dt
LU (6)

and L commutes with U we have the transformed Schrödinger equation

i
∂φ

∂t
=

(

U−1HU + i
dα

dt
L

)

φ . (7)

We can choose U arbitarily; usually U is chosen to eliminate L from H or to scale
the variables and we will give examples of these procedures. Initially we consider
choosing α(t) to eliminate the operator L from the equation .

To illustrate this we consider a specific Lie algebra with operators J0, J+, J−
satsifying the commutation relations:

[J0, J+] = J+ , [J0, J−] = −J− , [J+, J−] = 2σJ0 (8)

(σ = 1 for SO(3) and σ = −1 for SO(2,1) but in principle it is arbitrary for algebraic
purposes and we choose it to be 1) and suppose that

H = a(t)J− + b(t)J0 + c(t)J+ . (9)

Choosing L = J+ we have that U = exp
(

−α(t)J+

)

and we need to calculate
U−1HU .

To do this we use the Baker–Campbell–Hausdoff expansion:

exp(pA)B exp(−pA) = B + p[A,B] +
p2

2
[A, [A,B]] + . . . . (10)

Applying this we obtain

i
∂φ

∂t
=

(

a(J− + 2αJ0 − α2J+) + b(J0 − αJ+) + cJ+ + i
dα

dt
J+

)

φ , (11)

where the time–dependence has been supressed. In the case where a, b and c are
independent of t we may choose α, also independent of t, to eliminate the term in
J+:

α2a+ αb− c = 0 . (12)

Clearly, algebraically there is a choice for α since there are two solutions to this
quadratic equation. One particular realization is

J+ =
1

2
x2, J− = −1

2

d2

dx2
and J0 =

1

4

(

x
d

dx
+

d

dx
x

)

(13)
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and with the choice a = c = 1 and b = 0 we have the standard time–independent
Schrödinger equation for the harmonic oscillator. In this case the choice of α is
determined since we require the solution to vanish at x = ±∞. The two possible
values are in this case α = ±1.

ψ = exp

(

−α 1

2
x2

)

φ , (14)

so α = 1 > 0 is required.
Essentially this is a boundary condition, independent of the algebra, and in cases

where the coefficients are time–dependent we also need to consider the boundary
conditions carefully. In order to eliminate J+ in these cases we need to solve

α2a+ αb− c− i
da

dt
= 0 , (15)

which is, in general a Riccatti equation and we need to specify the boundary con-
dition which will often be the value of α at t = t0 and if α(t0) = 0 then the
transformation preserves the intiial wavefunction that is

ψ(x, t0) = φ(x, t0) . (16)

There is a difficulty with these, fairly elegant, procedures in some practical
examples; these are cases where the region of the variable x is confined within
finite limits or the potential is different in two or more regions.

If for example we have a ψ(a, t) = 0 for all t and we have transformed so that

as above where now L = J− = −1

2

d2

dx2
then this boundary condition becomes:

ψ(a, t) = exp
(

−α(t)J−
)

φ(x, t) |x=a=0 . (17)

This of course is an awkward boundary condition and we seek to circumvent this
by considering the solution of the original problem only in x ≤ b where b < a and
a− b is small and in b < x < a replacing H by

h = H + V , (18)

where V (a, t) is infinite (so ψ(a, t) = 0) and V (b, t) = 0 and all derivatives with
respect to x are also zero at x = b. Since a − b is small the essential physics will
usually be equivalent to the original problem and we are only interested in the
region x < b and consequently the difficulty of the awkward boundary condition
has been removed; the boundary conditions are formally at x = a and the solution
is continuous so φ(b, t) is obtained automatically.

To simplify the Hamiltonian H we may succesively use U1 = exp
(

iα(t)J+

)

and

U2 = exp
(

iβ(t)J−
)

to eliminate J+ and J− so that we have

H = g(t)J0 (19)
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and since in the chosen realization J0 is a spectrum generating operator:

J0x
n =

1

4
(2n+ 1)xn , (20)

then the exact solution may be obtained from

g(t)J0ω = i
∂ω

∂t
, (21)

which can be solved by separation of the variables x and t. The initial wavefunction
(t = t0) may, most conveniently, be expanded in terms of the eigenfunctions xn.

Another example of an awkward boundary value problem is the double well
model

H =











−1

2

d2

dx2
+

1

2
(x+ a)2 + q(t)x −N < x < 0

−1

2

d2

dx2
+

1

2
(x− a)2 + q(t)x 0 < x < N

= −1

2

d2

dx2
+V (x)+q(t)x . (22)

Here the potential V (x) is continuous at the origin but has a discontinuous deriva-
tive there. The term q(t)x is a model for an applied field and transformations can
be used to eliminate this term and consequently to obtain the complete analytical
solution. The details of this procedure have been published [1] but in addition to
the transformations it is necessary to deal with the origin in a similar way to the
last problem so that in −ε < x < ε we redefine H to

H = −1

2

d2

dx2
+ V (x)W (x) + q(t)x , (23)

where W (x) is a continuous function, with continuous derivatives

W (0) = W (n)(±ε) = W (n)(0) = 0 , W (x) = 1 | x |≥ ε . (24)

Again the region −ε < x < ε is assumed small and the physics is essentially the
same.

There are many ways the these aditional potentials (V (x, t) and W (x) for the
two problems) can be defined, but the way we have chosen uses a function which de-
pends on a parameter β and was used by Lighthill [2] in his derivation of generalized
functions:

f(β, x) =

{

exp(−1/(β2 − x2)) −β < x < β
0 otherwise

. (25)

The function f(β, x) is continuous and has continuous derivatives and we have that
f(β,±β) = 0 and also all the derivatives of f are zero at x = ±β.

For the first problem (where we may allow b = β to depend on t) we take

V (x, t) =







0 x < b
f(b, x)

a− x
b < x < a

. (26)
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Note that this is infinite at x = a as required and smoothly zero at x = b.
For the second (double–well) problem we first define

s±(x) =

∫ x

0 f
(

1,± 2y

ε
− 1

)

dy
∫ ±ε

0 f
(

1,± 2y

ε
− 1

)

dy
. (27)

Note that s±(0) = 0, s+(ε) = s−(−ε) = 1 and all derivatives of s+(x) are zero
at 0 and ε. Similarly all derivatives of s−(x) are zero at 0 and −ε. From these
definitions we may construct W (x):

W (x) =















1 x ≥ ε ,
s+(x) 0 ≤ x ≤ ε ,
s−(x) −ε ≤ x ≤ 0 ,
1 x ≤ −ε .

(28)

Examples.

In figures 1 and 2 we give an examples of the double well (with N infinite, a =
b = 2.5) and q(t) = t exp(−t). The light curve represnts the initial wavefunction and
the dark curve the wavefunction at a later time. In figure 1 the initial wavefunction
is the ground state of the time–independent potential at t = 0 (note q(0) = 0) and
in figure 2 the initial state is a combination of the first two eigenstates chosen to
localize the initial wavefunction. In both cases the wavepacket moves but in the
latter case, independently of this motion the shape of the wavefunction changes.

fig 1
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Fig. 1. Stationary initial condition

In forming stationary states we need to match the wavefunctions and their
derivatives at x = 0 by letting ε → 0 and, since N is infinite, take account of the
asymptotic behaviour; this analysis is independent of the algebraic considerations.
For the staionary states we have

Hω = (J+ + J−)ω = Eω . (29)

Transforming using
v = exp(−γJ+)ω (30)

leads to
(J− + 2J0)v = Ev . (31)
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Fig. 2. Non–stationary initial condition

(Theoretically we can choose γ = ±1 but the choice γ = i leads to ω = exp(iJ+)v
and we obtain the correct asymptotic factor.)

A further transformation of the form

v = exp(−γ1J−)v1 (32)

can be shown to lead to a divergent expansion and we need to work with

(J− + 2J0)v = Ev (33)

to obtain a series solution with the correct behaviour at x = 0 and x infinite.

Further examples

In examples such as the first problem mentioned we may have not only con-
straints such as

ψ(a, t) = 0 = ψ(−a, t) = 0 , (34)

but also the parameter a may also depend on t. The transformations may also be
used, instead of eliminating an operator, to scale the problem so that the boundary
conditions become time–idependent.

This is acheived in the realization above using transformations of the form

U = exp
(

−α(t)J0

)

. (35)

With this transormation
U−1xU = exp

(α

2

)

x (36)

so that choosing exp
(

α
2

)

= a(t) transforms the boundary conditions to

ψ(1, t) = 0 = ψ(−1, t) = 0 (37)

independent of t. For details of the rotations in such moving boundary problems
see Burrows and Cohen [3].

As an explicit example we consider

i
∂ψ

∂t
= Hψ , H = −1

2
D2 +

1

2
λx2 , (38)

6



Algebraic solutions . . .

where with λ real, λ > 0 describes the standard quantal oscillator, λ < 0 a repulsive
oscillator and λ = 0 a particle in a box (the range of x is restricted in each case).

We restrict the range of the space–variables to a finite closed region R, defined
by

R : X1 ≤ x ≤ X2 (39)

and adopt TD values for the endpoints X1, X2 so that

X1 = −µL(t) , X2 = µL(t) , (40)

where µ1, µ2, L(t) > 0. Just beyond these boundary points, we introduce the
regions

R+ : X2 ≤ x ≤ X2(1 + ε) (41)

and
R− : X1(1 + ε) ≤ x ≤ X2 , (42)

where ε is a small real positive quantity; we then impose the boundary conditions
that, for all t

ψ(X1(1 + ε), t) = ψ(X2(1 + ε), t) = 0 . (43)

The regions R+, R− are intervals into which the probability density may ’leak’,
and formally, our model is equivalent to the modified TDSE with Hamiltonian

H(x, t) = −1

2
D2 +

1

2
λx2 + V (x, t) . (44)

Typically L(t) may be oscillatory , or a pulse potential. Below we illustrate the
procedure with L(t) = 1 + exp(−t) so that the moving boundary is asymptotically
constant and forms a model for the process of confining the particle. A typical
calculation proceeds in the following way by transforming using

ψ = U1ψ1 , U1 = exp
[

iα(t)J0

]

, (45)

so that in R

i
∂ψ1

∂t
= H1ψ1 , (46)

with
H1(x, t) = exp(−α)J− + iα̇J0 + λ exp(α)J+ . (47)

Choosing α = 2 ln
(

L(t)
)

the boundary conditions on ψ1 become

ψ1

(

−µ1(1 + ε), t
)

= ψ1

(

µ2(1 + ε), t
)

= 0 , (48)

while the range R becomes simply

−µ1 ≤ x ≤ µ2 . (49)

Now let
ψ1 = U2ψ2 , U2 = exp

[

−β(t)J+

]

, (50)
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Table 1.

t L(t) P (t)

−2 8.39 1.000

−1 3.72 1.000

0 2.00 0.995

1 1.37 0.950

2 1.14 0.891

3 1.05 0.858

4 1.02 0.855

5 1.01 0.846

6 1.00 0.838

7 1.00 0.847

8 1.00 0.845

so that we have

H2(x, t) = exp(iα)J−+
(

iα̇+2 exp(−α)β
)

J0+
(

iβ̇−iα̇β−exp(−α)β2+λ exp(α)
)

J+ .
(51)

We may now choose β so that the term in J+ is eliminated

iβ̇ = −λ exp(α) + iα̇β + exp(−α)β2 . (52)

In general such a Riccatti equation needs to be solved numerically but here we have
an analytic solution

β = k exp(α) , k2 = λ (53)

and from this the general solution can be obtained

β = k exp(α)
B exp(2ikt) + 1

B exp(2ikt) − 1
, k =

√
λ . (54)

We may then eliminate J− (this may be achieved analytically by quadrature
and does not involve a Riccatti equation) and reach the Schrödinger equation

∂ψ3

∂t
= q̇J0ψ3 , q̇ = α̇− 2i exp(α)β , (55)

which may be solved to give:

ψ3(x, t) = U4ψ3(x, t0) , U4 = exp
[

q(t)J0

]

. (56)

Of course this final transformation rescales x and, to illustate the solution it is often
more convenient to use a waveform obtained earlier in the transformation. In the
table below we illustrate ψ1 with the interval R time–independent. To do this we
use the measure

P (t) =

∫ 1

−1
| ψ1(x, t) |2 dx

∫ 1

−1 | ψ1(x,−2) |2 dx
. (57)

8



Algebraic solutions . . .

In the table 1 we have used L(t) = 1 + exp(−t) and an initial wavefunction

ψ(x, t0) = exp
(

−x2

2

)(

1 − x2

L(t0)

)

where so that after the first scaling transforma-

tion, ψ1(x, t0) lies entirely in −1 ≤ x ≤ 1. ¿From the values in the table we see
that there is some leakage to the intervals R± but asymptotically the probability
of confinment is approximately 0.845 and this is fairly consistent.
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