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1 Introduction

In many recent astrophysical applications of the theory of dense matter it is
necessary to investigate the properties of rapidly rotating compact objects within
general relativity theory. The reason of this development is the hope that changes
in the internal structure of the dense matter, e.g. during phase transitions, could
have observable consequences for the dynamics of the rotational behavior of these
objects. Particular examples are the observations of glitches and postglitch relax-
ation in pulsars, which are discussed as signals for superfluidity in nuclear matter [1]
and the suggestion that the braking index is remarkably enhanced when a quark
matter core occurs in the center of a pulsar during its spin–down evolution [2].
Further constraints for the nuclear equation of state come from the observation of
quasi–periodic brightness oscillations (QPO’s) in low–mass–X–ray binaries, which
entail mass and radius limits for rapidly rotating neutron stars [3].

The problem of rotation in the general relativity theory was and remains one of
the central and complicated problems [4]. Besides the modern methods of numer-
ical solutions of this problem the method of perturbation theory [5] is physically
the most systematic approach for the solution of the problem for stationary gravi-
tational fields and their sources.

From the practical point of view for definitions of the integral characteristics of
the astrophysical objects it is important to analyze the asymptotical expansion of
the metric tensor at large distances from the stars, to be able to compare the results
with observational data. One can of course introduce the physical parameters of
the configuration using the symmetry properties of the object and the gravitational
field by expressing them in terms of conserved quantities.

Using the method of perturbation theory we are going to calculate the total
mass, angular momentum and shape deformation from the iterative solution of
the gravitational field equations in case of hydrodynamical, thermodynamical and
chemical equilibrium for given total baryon number and angular velocity Ω of the
object. The perturbation method allows to solve the problem for all possible angular
velocities.

A number of papers have been devoted to the problem of rotating stellar con-
figurations within the framework of Newton’s theory. Exact analytical solutions
outside the mass distribution are known in the case of Newton’s theory. Interior
solutions of the problem were reviewed in [6] – [12].

Kerr found the exterior solution of the rotation problem within the framework
of the Einstein theory [13].
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The general solution of Einstein’s equations for small angular velocities was dis-
cussed in [14] and [15] in the Ω approximation. It was shown that, in this approxi-
mation, the diagonal components of the metric tensor outside the mass distribution
retain the Schwarzschild form, but there is also the nondiagonal component

g03 = −2I

r
sin2 θ ,

where I is the total angular momentum. This approximation corresponds to the
rotation of a sphere with allowance for Coriolis forces but without change of shape.
The solution depends on two parameters, namely, the mass and the total angu-
lar momentum, and can be obtained from the Kerr solution by expanding the
latter in terms of the total angular momentum, retaining only terms that are lin-
ear in I. When the next approximation in Ω (terms of the order of Ω2) is taken
into account, the configuration becomes nonspherical and centrifugal forces and
quadrupole moments appear. To find the integral characteristics of rotating stars
in this approximation we must have at our disposal both the interior and exterior
solutions of Einstein’s equations, and join them on the stellar surface.

2 Form of the four−dimensional interval

From the geometric standpoint, constant axially symmetric gravitational fields
can be divided into two types, namely, static and stationary fields. Static fields are
produced by nonmoving oblate bodies with axially symmetric mass distributions.
This type of mass distribution cannot be present in the absence of rotation in a
system consisting of gravitating gases and liquids. In fact, this would require a very
special stress field inside the mass distribution. In the absence of rotation or special
stress fields, the mass distribution must necessarily be spherically symmetric. Sta-
tionary axially symmetric fields are defined as those produced during the rotation
of masses with time–independent angular velocities. The metrics for the two types
of field are quite different. We shall be concerned exclusively with stationary fields,
since they are the only fields, which are of interest in physics.

We shall consider the metric for a gravitational field produced by a stationary
rotation of a mass distribution. It is clear that, in this case, the mass distribution
and the gravitational field must be axially symmetric, i.e.

gik = gik (r, θ,Ω) . (1)

In the general case, Ω may depend on R and θ. We shall use the following notation
x0 = t, x1 = r, x2 = θ, x3 = ϕ.

Suppose that the observer is located in a fixed reference frame. We shall assume
that the rotation occurs in the clockwise direction (we are using a system of units
in which G = c = 1):

Ω =
dϕ∗

dx0
. (2)

Let us apply the coordinate transformation x́0 = −x0, x́1 = x1, x́2 = x2,
x́3 = −x3. This will not affect the sign of the angular velocity. Consequently, gik
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will not undergo any change either. Since d2s must be invariant, it follows that

g01 = g13 = g23 = g20 = 0 . (3)

Therefore, in the most general case, the four–dimensional interval can be written
in the form

d2s = g00d2x0 + g11d2x1 + g22d2x2 + g33d2x3 + 2g12dx1dx2 + 2g03dx0dx3 . (4)

Further simplification can be achieved in this expression by suitable transformation
of the coordinates r and θ. We shall demand that in the new coordinates

g′12 = 0 , g′33 = g′22 sin2 θ , (5)

where it will be convenient to substitute

g′11 = eλ g′22 = eµ , g′03 = ωeµ sin2 θ , g′00 = ω2eµ sin2 θ − eν . (6)

In the new notation, the four–dimensional interval can be written in the form

d2s = eλd2r +eµ
(
d2θ +sin2 θ d2ϕ

)
+2ωeµ sin2 θ dϕ dt+

(
ω2eµ sin2 θ− eν

)
d2t , (7)

where λ, µ, ω and ν are functions of r, θ and Ω. Since the metric must be invariant
under the transformation t→ −t, and the angular velocity changes sign under this
transformation, it is clear that all the components of the metric tensor other than
ω will be even functions of Ω. Moreover, ω must be an odd function of Ω.

It is important to note that, in contrast to the static axially symmetric case,
the stationary situation is such that the component g03 of the metric tensor cannot
be reduced to zero by any choice of the reference frame. In the static case, gik are
functions of r and θ (there is no rotation and no dependence on Ω) and, therefore,
the requirement that ds be invariant under the transformation t→ −t means that
g03 is zero.

3 Einstein equations for axial symmetry

The general form of the metric for an axial symmetric space–time manifold is

d2s = eλd2r + eµ
(
d2θ + sin2 θ(Ω + ω)2d2t

)
− eνd2t (8)

written in a spherical symmetric coordinate system in order to obtain as a limiting
case the Schwarzschild solution. This line element is time–translational and axial–
rotational invariant; all metric functions are dependent on the coordinate distance
from the coordinate center r and azimuthal angle θ between the radius vector and
the axis of symmetry.

The physical characteristics of the rotating object depend on the centrifugal
forces in the local inertial frame of the observer. In general relativity due to the
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Lenz–Thirring law rotational effects are described by $ the difference of the angular
velocity Ω and the frame dragging frequency −ω

$ ≡ Ω + ω(r, θ) . (9)

The energy–momentum tensor of stellar matter can be approximated by the
expression of the energy–momentum tensor of an ideal liquid

T ν
µ = (P + ρ)uµuν − pδν

µ , (10)

where uµ is the 4–velocity of matter, P the pressure and ρ the energy density.
We assume that the star due to high viscosity (ignoring the super–fluid compo-

nent of the matter) rotates stationary as a solid body with an angular velocity Ω
that is independent of the spatial coordinates. The time scales for changes in the
angular velocity, which we will consider in our applications, are well separated from
the relaxation times at which hydrodynamical equilibrium is established, such that
the assumption of a rigid rotator model is justified.

Therefore there are only two non-vanishing components of the velocity

uϕ = Ωut

ut =
1√

eν − eµ$2 sin2 θ
.

(11)

Once the energy–momentum tensor (10) is fixed by the choice of the equation of
state for stellar matter, the unknown metric functions ν, λ, µ, ω can be determined
by the set Einstein field equations of which we use the following four combinations.

There are three Einstein equations for the determination of the diagonal ele-
ments of the metric tensor

Gr
r −Gt

t = 8πG
(
T r

r − T t
t

)
,

Gθ
θ + Gϕ

ϕ = 8πG
(
T θ

θ + Tϕ
ϕ

)
, (12)

Gr
θ = 0 ,

and one for the determination of the nondiagonal element

Gt
ϕ = 8πGT t

ϕ . (13)

Here G is the gravitational constant and the Gν
µ is the Einstein tensor.

We use also an equation for the hydrodynamical equilibrium

H(r, θ) ≡
∫

dP

P + ρ
=

1
2

ln
[
ut(r, θ)

]
+ const , (14)

where the gravitational enthalpy H is introduced as a function of the energy and
pressure distribution.

4



Stationary axially symmetric gravitation fields in Einstein theory

These Einstein equations allow us to find four unknown functions, determining
the gravitational field in empty space:

Gr
r −Gt

t = 0 ,

Gθ
θ + Gϕ

ϕ = 0 ,

Gr
θ = 0 ,

Gt
ϕ = 0 .

(15)

4 Solution method

The problem of the rotation can be solved iteratively by using a perturbation
expansion of the metric tensor in a Taylor series with respect to the angular velocity.
As a small parameter for this expansion we use the ratio of the rotational energy
to the gravitational one of a homogenous Newtonian star

β ≡ Erot

Egrav
=

(
Ω
Ω

)2

, (16)

where Ω
2

= 8πGρ(0) and ρ(0) is the mass density in the center of the configura-
tion. This expansion gives sufficiently correct solutions already at O(Ω2), since the
expansion parameter is limited to values Ω/Ω� 1 by the condition of mechanical
stability of the rigid rotation. This can be easily seen by considering as an upper
limit for attainable angular velocities the so-called Kepler one ΩK =

√
GM/R3

e

with M being the total mass and Re the equatorial radius. For homogenous New-
tonian spherical stars Ω < ΩK = Ω/

√
6.

The expansion of the metric tensor is given by

gik(r, θ,Ω) =
∞∑

j=0

(
Ω
Ω

)j

g
(j)
ik (r, θ) . (17)

According to the symmetries of the metric coefficients we have even orders j =
0, 2, . . . for the diagonal elements

λ(r, θ,Ω) = λ0(r) +
∞∑

n=1

βnλ(n)(r, θ) ,

ν(r, θ,Ω) = ν0(r) +
∞∑

n=1

βnν(n)(r, θ) , (18)

µ(r, θ,Ω) = µ0(r) +
∞∑

n=1

βnµ(n)(r, θ) ,

and odd orders only for the frame dragging frequency

ω(r, θ,Ω) =
√

β
∞∑

n=0

βnω(n)(r, θ) . (19)
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All functions with superscript (0) denote the solution of the static configuration
and therefore they are only functions of r, the others are the corrections corre-
sponding to the rotation.

This series expansion allows to transform the Einstein equations into a coupled
set of equations for the coefficient functions, which can be solved by recursion. At
zeroth order we recover the nonlinear problem of the static spherically symmetric
star configuration (Tolman–Oppenheimer–Volkoff equations).

Obtained series we substitute for Einstein equations and choose those terms
of expansion, which correspond to that degree of β, in approximation of which
we wish to solve the problem. In order to find the Einstein equations in any
approximation, it is necessary to have λn, µn, νn and ωn functions for all previous
approximations. Therefore the problem must be solved step-by-step, beginning
from the zero approximation. In spite of that, we found a common method of
solution for all even and all odd orders of approximation.

5 Zeroth order: Static spherically symmetric star models

The functions of the spherically symmetric solution can be found from Eqs. (12)
and (14) in zeroth order of the Ω–expansion.

That is the solution of the following equations (Tolman–Oppenheimer–Volkoff)

dP 0(r)
dr

= −G
[
P 0(r) + ρ0(r)

] m(r) + 4πP 0(r)r3

r
[
r − 2Gm(r)

] , (20)

where m(r) is the distribution of accumulated mass

m(r) = 4π

∫ r

0

ρ(r′)r′2dr′ (21)

within sphere of radius r. For the gravitational potentials we have

λ0(r) = − ln
(

1− 2Gm(r)
r

)
ν0(r) = −λ0(R0)− 2G

∫ R0

r

m(r′) + 4πP 0(r′)r′3

r′
(
r′ − 2Gm(r′)

) dr′ .

(22)

R0 is the spherical radius of the star, which is defined by P 0(R0) = 0. The set of
Eqs. (20) and (21) fulfills the following conditions at the center of the configuration:
ρ0(0) = ρ(0) and m(0) = 0. The central mass density ρ(0) is the parameter of the
spherical configuration. The total mass of the spherically distributed matter in the
self-consistent gravitational field is M0

(
ρ0(0)

)
= m(R0).

For empty space in zeroth order we have Schwarzschild metric, and Einstein
equations are

e−λ0
(

1
r2
− λ0

1

r

)
− 1

r2
= 0 ,

e−λ0
(

1
r2

+
ν0
1

r

)
− 1

r2
= 0 .

(23)
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The solutions of these equations are

e−λ0
= eν0

= 1− 2m

r
and eµ0

= r2 , (24)

where m ≡ m(R0) is the mass of spherically symmetric configuration.

6 Odd (Ω1, Ω3, . . .) orders of approximation

From Einstein equations only G0
3 = 0 contains odd degrees of angular velocity.

If we substitute known functions λ0, . . . , λn, ν0, . . . , νn, µ0, . . . , µn, ω0, . . . ,
ωn−1 from previous approximations, we will obtain an equation for ωn (Ω2n+1

approximation). For all approximations left sides of this equation is the same.
They differ from each other only by right sides:

ωn
11 +

4
r

ωn
1 +

1
r(r − 2m)

(ωn
22 + 3ωn

2 ctg θ) = Wn(r, θ) , (25)

W 0(r, θ) = 0 ,

W 1(r, θ) = −ω0
1

(
2µ1

1 − 1
2 λ1

1 − 1
2 ν1

1

)
. . .

(n = 0 corresponds to Ω1 approximation, and n = 1 — to Ω3.)
The solution of Eq. (25) will be sought in the form

ωn(r, θ) =
∞∑

k=0

ωn
k (r)P (1)

k+1(cos θ) , P
(1)
k (γ) ≡ dPk(γ)

dγ
. (26)

In that case, we obtain for ωn
k

ωn
(k) 11 +

4
r

ωn
(k) 1 −

k(k + 3)
r(r − 2m)

ωn
(k) = Wn

k (r) , k = 0, . . . , 2n , (27)

W 0
k (r) = 0

W 1
k (r) = −

∑
`=0,2

ω0
1

[
2µ1

(`) 1 − 1
2 λ1

(`) 1 − 1
2 ν1

(`) 1

] δk,` − δk,`−2

2` + 1
,

. . .

Solution is

ωn
k =

an
k

rk+3
F

(
k, k + 3, 2k + 4;

2m

r

)
+bn

krkF

(
−k,−k − 3,−2k − 2;

2m

r

)
+wn

k (r) .

(28)
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Here an
k and bn

k are constants of integration. Their values are determined from
the continuity of ω(r, θ) and its first derivative on the surface of the configuration.
bn
k = 0, because g03 is the final quantity at infinity.

ωn
k =

an
k

rk+3
F

(
k, k + 3, 2k + 4;

2m

r

)
+ wn

k (r) , (29)

w0
0(r) = 0 ,

w1
0(r) =

3a0
0A

1
0

2r4
− 3a0

0A
1
2

16m5r

[
5− 7m

r
− 40m2

3r2
+

2m3

r3
+

+
r

m

(
5
2
− 6m

r
+

4m3

r3

)
ln

(
1− 2m

r

)]
− (a0

0)
3

10mr6

(
1− 27m

r

)
,

w1
2(r) = − a0

0A
1
2

8m4r2

[
3− 2m

r
− 3m2

r2
+

r

2m

(
3 +

m

r

) (
1− 2m

r

)
ln

(
1− 2m

r

)]
−

− (a0
0)

3

60m2r5

(
5 +

9m

r

) (
1− 2m

r

)
,

. . .

7 Even (Ω2, Ω4, . . .) orders of approximation

Einstein equations
G1

1 −G0
0 = 0 ,

G2
2 + G3

3 = 0 ,

Gt
ϕ = 0

(30)

contain even degrees of angular velocity. Substituting in these equations known
functions λ0, . . . , λn−1, ν0, . . . , νn−1, µ0, . . . , µn−1, ω0, . . . , ωn−1 from previous
approximations, we obtain equations for unknown functions λn, νn, µn (Ω2n ap-
proximation). Left sides of these equations are the same for any n, they differ from
each other only by right sides:(

1− 2m

r

) [
µn

11 +
2µn

1 − λn
1 − νn

1

r

]
+

λn
22 − νn

22 + (λn
2 − νn

2 ) ctg θ

2r2
= Cn(r, θ) , (31)

(
1− 2m

r

)
(µn

11 + νn
11) +

2(r −m)µn
1 − (r −m)λn

1 + (r + m)νn
1

r2
+

+
λn

22 + νn
22 + (λn

2 + νn
2 ) ctg θ

2r2
= Dn(r, θ) ,

(32)

(
1− 2m

r

)
(µn

12 + νn
12)−

(r −m)λn
2 + (r − 3m)νn

2

r2
= En(r, θ) . (33)

C1(r, θ) = 0 ,
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C2(r, θ) = −1
2

(
1− 2m

r

)
µ1

1

(
µ1

1 − λ1
1 − ν1

1

)
−

− 1
2r2

{
1
2

(
(λ1

2)
2 − (ν1

2)2
)
−

(
µ1 − λ1

) [
λ1

22 − ν1
22 +

(
λ1

2 − ν1
2

)
ctg θ

]}
,

D1(r, θ) =
9(a0

0)
2

r6
sin2 θ ,

D2(r, θ) = −1
2

(
1− 2m

r

) [
µ1

1

(
µ1

1 − λ1
1 + ν1

1

)
− ν1

1

(
λ1

1 − ν1
1

)]
−

− 1
2r2

{
1
2

(
λ1

2 + ν1
2

)2 −
(
µ1 − λ1

) [
λ1

22 + ν1
22 +

(
λ1

2 + ν1
2

)
ctg θ

]}
−

−3a0
0

r2

[
2ω1

1 −
3a0

0

r4

(
µ1 − ν1

)]
sin2 θ ,

E1(r, θ) = 0 ,

E2(r, θ) =
1
2

(
1− 2m

r

) [
λ1

2

(
µ1

1 + ν1
1

)
+ ν1

2

(
µ1

1 − ν1
1

)]
− 3a0

0

r2
ω1

2 sin2 θ .

. . .

We can integrate the Eq. (33) by θ. Then

µn
1 = −νn

1 +
r −m

r(r − 2m)
λn +

r − 3m

r(r − 2m)
νn + Mn(r, θ) . (34)

M1(r, θ) = 0 , . . . .

Substituting µn
1 and µn

11 into Eqs. (31) and (32) we obtain(
1− 2m

r

) [
νn
11 −

m

r(r − 2m)
λn

1 +
2r − 3m

r(r − 2m)
νn
1 −

r2 − 4mr + 2m2

r2(r − 2m)2
λn−

−r2 − 4mr + 6m2

r2(r − 2m)2
νn

]
− 1

2r2
[λn

22 − νn
22 + (λn

2 − νn
2 ) ctg θ] = Hn(r, θ) ,

(35)

λn + νn + 1
2 [λn

22 + νn
22 + (λn

2 + νn
2 ) ctg θ] = Kn(r, θ) , (36)

H1(r, θ) = 0 ,

K1(r, θ) =
9(a0

0)
2

r4
sin2 θ ,

. . .

All diagonal elements of the metric tensor could be represented as a series expansion
in Legendre polynomials:

λn(r, θ) =
∞∑

`=0

λn
` (r)P`(cos θ) ,

νn(r, θ) =
∞∑

`=0

νn
` (r)P`(cos θ) . (37)
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Substitute these series into the Eqs. (35) and (36):(
1− 2m

r

) [
νn
(`)11 −

m

r(r − 2m)
λn

(`)1 +
2r − 3m

r(r − 2m)
νn
(`)1 −

r2 − 4mr + 2m2

r2(r − 2m)2
λn

`−

−r2 − 4mr + 6m2

r2(r − 2m)2
νn

`

]
+

`(` + 1)
2r2

(λn
` − νn

` ) = Qn
` (r) ,

λn
` = −νn

` + Ln
` (r) , ` = 0, . . . , 2n , (38)

Q1
0(r) = 0 , Q1

2(r) = 0 ,

L1
0(r) =

6(a0
0)

2

r4
, L1

2(r) =
3(a0

0)
2

r4
,

. . . .

Finally we obtain equation for νn
` :(

1− 2m

r

)
νn
(`)11 +

2(r −m)
r2

νn
(`)1 −

[
4m2

r3(r − 2m)
+

`(` + 1)
r2

]
νn

` = Nn
` (r) , (39)

N1
0 (r) = 6(a0

0)
2 r2 − 8mr + 10m2

r7(r − 2m)

N1
2 (r) = −6(a0

0)
2 r2 + mr − 5m2

r7(r − 2m)
. . .

The solution of this equation is

νn
` =

An
`

r`(r − 2m)
F

(
` + 1, `− 1, 2` + 2;

2m

r

)
+

+
Bn

` r`+1

r − 2m
F

(
−`,−`− 2,−2`;

2m

r

)
+ nn

` (r) ,

(40)

where An
` and Bn

` are constants of integration. The value of An
` is determined

from continuity of ν(r, θ) and its first derivative on the surface of the configuration.
Bn

` = 0, because g00 is the final quantity at infinity.

νn
` =

An
`

r`(r − 2m)
F

(
` + 1, `− 1, 2` + 2;

2m

r

)
+ nn

` (r) , (41)

n1
0(r) =

(a0
0)

2

2r4

r − 4m

r − 2m
, n1

2(r) =
(a0

0)
2

2mr4

r2 −mr − 2m2

r − 2m
,

n2
0(r) = −(A1

0)
2 m

r

r −m

(r − 2m)3

(
5− 10

m

r
+ 8

m2

r2

)
+
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+(A1
2)

2 5r3

128m9

{
r2(r −m)
(r − 2m)3

(
189− 1512

m

r
+ 4464

m2

r2
− 5616

m3

r3
+

+2172
m4

r4
+ 528

m5

r5
+ 16

m6

r6
+ 64

m7

r7
− 320

m8

r8

)
+

+
3r

2m

(
117− 468

m

r
+ 504

m2

r2
− 72

m3

r3
− 20

m4

r4

)
ln

(
1− 2m

r

)
+

+
81r2

2m2

(
1− m

r

) (
1− 2m

r

)2

ln2

(
1− 2m

r

)}
−

−A1
0A

1
2

5
m

1
(r − 2m)3

(
1− 3

m

r
+ 6

m2

r2
− 4

m3

r3

)
−

−(a0
0)

2A1
0

1
4m2

1
(r − 2m)3

(
40− 375

m

r
+ 1074

m2

r2
− 364

m3

r3
−

−3576
m4

r4
+ 6384

m5

r5
− 3360

m6

r6

)
−

−(a0
0)

2A1
2

1
16m6r

[
r3

(r − 2m)3

(
69− 561

m

r
+ 2834

m2

r2
− 14610

m3

r3
+

+52380
m4

r4
− 98688

m5

r5
+ 74592

m6

r6
+ 13152

m7

r7
− 33600

m8

r8

)
+

+
15r

m

(
1− 6

m

r
+ 48

m2

r2
− 166

m3

r3
+ 165

m4

r4

)
ln

(
1− 2m

r

)]
−

−a0
0a

1
0

3
m2r2

(
1− 8m

r
+

10m2

r2

)
−

−a0
0a

1
2

[
2m

r

(
3 + 3

m

r
+ 4

m2

r2
+ 6

m3

r3

)
− 3 ln

(
1− 2m

r

)]
−

−(a0
0)

4 1
20m3r2

1
(r − 2m)3

(
189− 623

m

r
− 324

m2

r2
− 16944

m3

r3
+

+143520
m4

r4
− 404052

m5

r5
+ 497880

m6

r6
− 230400

m7

r7

)
,

n2
2(r) = −(A1

2)
2 75r

448m7

r2

3r2 − 6mr + 2m2
×

×

{
(r −m)(3r2 − 6mr − 2m2)

r(r − 2m)2

(
9− 36

m

r
+ 41

m2

r2
− 10

m3

r3
− 2

m4

r4

)
+

+
3r

m

(
12− 48

m

r
+ 53

m2

r2
− 10

m3

r3
− 6

m4

r4

)
ln

(
1− 2m

r

)
+

11
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+
45r2

4m2

(
1− m

r

) (
1− 2m

r

)2

ln2

(
1− 2m

r

)}
−

−A1
0A

1
2

15
8m3r

[
(r −m)

(
3r4 − 12mr3 + 12m2r2 − 4m4

)
r(r − 2m)2 (3r2 − 6mr + 2m2)

+
r

2m
ln

(
1− 2m

r

)]
+

+(a0
0)

2A1
0

1
2r5

11r2 + 33mr − 96m2

3r2 − 6mr + 2m2
+

+(a0
0)

2A1
2

3
56m4r

1
3r2 − 6mr + 2m2

[
r2

(r − 2m)2

(
150− 177

m

r
− 1964

m2

r2
+

+4340
m3

r3
− 548

m4

r4
− 2030

m5

r5
− 1120

m6

r6

)
+

+
5r

2m

(
33− 246

m2

r2
+ 178

m3

r3
+ 150

m4

r4

)
ln

(
1− 2m

r

)]
+

+a0
0a

1
0

6
r4

r2 + mr − 5m2

3r2 − 6mr + 2m2
+

+a0
0a

1
2

1
7

r2

3r2 − 6mr + 2m2

[
2
5

(
540− 1845

m

r
+ 1485

m2

r2
+ 108

m4

r4
+

+148
m5

r5
+ 60

m6

r6

)
+

+
3r

m

(
36− 159

m

r
+ 210

m2

r2
− 70

m3

r3

)
ln

(
1− 2m

r

)]
+

+(a0
0)

4 3
28m2r2

1
3r2 − 6mr + 2m2

(
20− 277

m

r
+ 540

m2

r2
+ 937

m3

r3
− 2079

m4

r4

)
,

n2
4(r) = −(A1

2)
2 15r3

448m7

1
5r2 − 10mr + m2

×

×

[
(r −m)

(
3r2 − 6mr − 2m2

)
r(r − 2m)2

(
51− 204

m

r
+ 230

m2

r2
− 52

m3

r3
+ 12

m4

r4

)
+

+
3r

2m

(
129− 516

m

r
+ 568

m2

r2
− 104

m3

r3
− 40

m4

r4

)
ln

(
1− 2m

r

)
+

+
117r2

2m2

(
1− m

r

) (
1− 2m

r

)2

ln2

(
1− 2m

r

)]
−

+(a0
0)

2A1
2

3
224m4r

1
5r2 − 10mr + m2

[
351− 489

m

r
− 356

m2

r2
− 210

m3

r3
− 336

m4

r4
+

+
5r

2m

(
81− 168

m

r
− 40

m2

r2
+ 64

m3

r3
+ 120

m4

r4

)
ln

(
1− 2m

r

)]
−

12
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−a0
0a

1
2

1
7

r2

5r2 − 10mr + m2

[
2
5

(
270− 765

m

r
+ 375

m2

r2
+ 105

m3

r3
+ 89

m4

r4
+

+88
m5

r5
+ 30

m6

r6

)
+

3r

m

(
18− 69

m

r
+ 70

m2

r2
− 7

m3

r3

)
ln

(
1− 2m

r

)]
−

− (a0
0)

4

280m2r4

1
5r2 − 10mr + m2

(
300 + 689

m

r
− 3359

m2

r2
+ 804

m3

r3
+ 1890

m4

r4

)
.

8 Constants

The obtained solution must coincide with the Papapetrou metric [16] at infinity:

d2s = −
(

1− 2M

r

)
d2t +

(
1 +

2M

r

)
d2r+

+r2

(
1 +

2M − 2m

r

) (
d2θ + sin2 θ d2ϕ

)
− 4Iz

r
sin2 θ dϕ dt .

(42)

Here M is the mass of a rotating star and Iz is the z component of its moment of
inertia. Analyzing the asymptotical expansion of our metric tensor and comparing
it with the Papapetrou metric, we can find, that

M = m− 1
2

∞∑
n=1

βnAn
0 ,

Iz = −1
2

√
β

∞∑
n=0

βnan
0 .

(43)

M and Iz contain only zeroth members of An
` and an

k . Other members are included
in quadrupole moment and moments of higher order.

Our purpose is to find a method for calculating any order of approximation also
for the internal solution, thus to find physical characteristics in result.
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