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We prove that the original Penrose tilings of the plane admit an infinite number of
independent scaling factors and an infinite number of inflation centers. Our results are
based on the definition of these tilings in terms of strip projection method proposed by
Katz and Duneau shortly after the discovery of quasicrystals.
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1 Introduction

The Fibonacci tiling of the line and the Penrose tilings of the plane are among
the lower dimensional quasiperiodic tilings used in the theoretical investigation of
the possible structures and physical properties of quasicrystals. Katz and Duneau
have shown [2] that the tilings of the plane by two rhombus obtained by Penrose
by using an inflation and a deflation procedure can be defined in terms of the
strip projection method. We use this definition in order to obtain some results
concerning the self-similarities of these remarkable tilings.

The method we use in the study of self-similarities is a direct generalization
of the method used by Katz and Duneau [2] in the case of an icosahedral tiling.
This method has been used up to now only in the case when the representation of
the symmetry group in superspace has only two R–irreducible components (corres-
ponding to the orthogonal projectors π and π′). In this case, one looks for scaling
factors in the set of the numbers λ satisfying the condition: there is λ′ such that the
matrix λπ + λ′π′ has integer entries. The additional condition one has to impose
depends on the shape of the window. If the window is a convex set symmetric with
respect to the origin then it is sufficient to ask |λ′| < 1.

In the case of Penrose tilings and in many other cases the representation of the
symmetry group in superspace has more than two R–irreducible components. In
the cases of interest for quasicrystal physics, the entries of the projectors belong to
some quadratic fields and it is possible [1] to decompose the superspace into three
invariant subspaces E (‘physical space’), E′ and E′′ such that:

1) the representations subduced to E and E′ are R–irreducible;
2) the projector corresponding to E′′ has rational entries.

In this case, we look for scaling factors in the set of the numbers λ satisfying the
condition: there exist λ′ and λ′′ such that λπ + λ′π′ + λ′′π′′ has integer entries.

The self-similarities of the set of all the atomic positions are expected to play
an important role in the description of the physical properties of quasicrystals. Our
aim is to present some results concerning the self-similarities of rhombic Penrose
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tilings, but it is not our purpose to determine all the self-similarities.

2 Penrose tilings

In this section we resume the definition of the rhombic Penrose tilings in terms
of the strip projection method, definition proposed by Katz and Duneau [2]. The
relation

g(x1, x2, x3, x4, x5) = (x5, x1, x2, x3, x4) (1)

defines a linear representation of the cyclic group C5 = 〈g | g5 = e〉 = {e, g, g2, g3, g4}
in the five–dimensional Euclidean space E5 = (R5, 〈, 〉), where

〈(x1, x2, x3, x4, x5), (y1, y2, y3, y4, y5)〉 =

5
∑

i=1

xiyi , ‖x‖ =
√

〈x, x〉 . (2)

This representation is a sum of three R–irreducible representations. The corres-
ponding invariant orthogonal subspaces are

E = {αv1 + βv2 | α, β ∈ R} ,

E′ = {αv′1 + βv′2 | α, β ∈ R} ,

E′′ = {αw| α ∈ R} ,

(3)

where
v1 =

(

1, cos 2π

5
,− cos π

5
,− cos π

5
, cos 2π

5

)
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0, sin 2π

5
, sin π

5
,− sin π

5
,− sin 2π

5

)

,

v′1 =
(

1,− cos π

5
, cos 2π

5
, cos 2π

5
,− cos π

5

)

,

v′2 =
(

0, sin π

5
,− sin 2π

5
, sin 2π

5
,− sin π

5

)

,

w =
(

1

5
, 1

5
, 1

5
, 1

5
, 1

5

)

.

(4)

The vectors ε1 = (1, 0, 0, 0, 0), ε2 = (0, 1, 0, 0, 0),. . . , ε5 = (0, 0, 0, 0, 1) form
the canonical basis of E5. The matrices of the orthogonal projectors π, π′ and π′′

corresponding to E, E′ and E′′ in this basis are

π = M( 2

5
,− τ

′

5
,− τ

5
) , π′ = M( 2

5
,− τ

5
,− τ

′

5
) , π′′ = M( 1

5
, 1

5
, 1

5
) , (5)

where τ = 1+
√

5

2
, τ ′ = 1−

√
5

2
and

M(α, β, γ) =













α β γ γ β

β α β γ γ

γ β α β γ

γ γ β α β

β γ γ β α













. (6)

The projection π(L) (resp. π′(L)) of the five–dimensional lattice L = Z
5 is a

Z–module dense in E (resp. E ′) generated by the vectors πε1, πε2, . . . , πε5 (resp.
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Fig. 1. The decompositions E5 = E ⊕ E⊥ = E ⊕E′
⊕ E′′ and the subspaces En.

π′ε1, π′ε2, . . . , π′ε5) which point to the vertices of a regular pentagon of center
(0, 0, 0, 0, 0). The mapping π⊥ = π′ + π′′ is the orthogonal projector corresponding
to the subspace E⊥ = E′ ⊕E′′. Since

π′′(L) = Zw = {nw | n ∈ Z} , (7)

the lattice L is contained in the union of parallel and equidistant subspaces
⋃

n∈Z
En,

where (see figure 1)
En = nw + E⊕E′ (8)

and the Z–module π⊥(L) is contained in the union of parallel and equidistant planes
Zw + E′ =

⋃

n∈Z
(nw + E′).

Let Ln = L∩En, Ω be the set of all the points lying in the interior of the regular
pentagon with vertices π′ε1, π′ε2, . . . , π′ε5, and let

W = t + {(x1, x2, x3, x4, x5) | 0 < xi < 1} , (9)

where the translation vector t ∈ E′ is chosen such that the boundary ∂W of the
set W = π⊥(W) does not contain any element of π⊥(L). This is possible since the
set π⊥(L) + ∂W has Lebesgue measure 0. The set defined in terms of the strip
projection method

P = {πx | x ∈ L, π⊥x ∈ W} (10)

is the set of all the vertices of a rhombic Penrose tiling [2].
The set W ∩ En is non-empty only for n ∈ {1, 2, 3, 4}, and

π⊥(W ∩ E1) = π′(W ∩ E1) + w = t + Ω + w ,

π⊥(W ∩ E2) = π′(W ∩ E2) + 2w = t − τΩ + 2w ,

π⊥(W ∩ E3) = π′(W ∩ E3) + 3w = t + τΩ + 3w ,

π⊥(W ∩ E4) = π′(W ∩ E4) + 4w = t − Ω + 4w .

(11)
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Therefore, P is a union of four sets

P =

4
⋃

n=1

{

πx
∣

∣ x ∈ Ln, π⊥x ∈ π⊥(W ∩ En)
}

. (12)

The translation along E′′

T : E5 −→ E5 : x 7→ x + 5w (13)

is bijective, πx = π(Tx), π′x = π′(Tx), T (En) = En+5 and T (Ln) = Ln+5. Denot-
ing W5k = ∅, W5k+1 = t+Ω, W5k+2 = t− τΩ, W5k+3 = t+ τΩ and W5k+4 = t−Ω
for any k ∈ Z, we can [2] re-write the definition of P as

P =
⋃

n∈Z

{

πx
∣

∣ x ∈ Ln, π′x ∈ Wn

}

. (14)

3 Self-similarities of Penrose tilings

The number λ is called a scaling factor of P if there is y ∈ E such that P is
invariant under the affine similarity [3]

Λ : E −→ E , Λx = y + λ(x − y) , (15)

that is, if Λ(P) ⊂ P . In this case we say that y is an inflation center corresponding
to λ, and Λ is a self-similarity of P . Since Λ maps each segment of straight line
into a segment of straight line, any self-similarity of the set P is at the same time
a self-similarity of the corresponding rhombic tiling. The set Λ(P) is the set of all
the vertices of a similar tiling, inflated by λ.

The subspaces E, E′ and E′′ are invariant under the linear transformation

S : E5 −→ E5 , S = λπ + λ′π′ + λ′′π′′ (16)

for any λ, λ′, λ′′ ∈ R. If the matrix of S in the basis {ε1, ε2, . . . , ε5} has integer
entries then S(L) ⊂ L.

Lemma.

a) If S has integer entries then λ′′ ∈ Z.
b) If j, k and l are integer numbers then

S = (j + kτ)π + (j + kτ ′)π′ + lπ′′ (17)

has integer entries if and only if 2k − j + l ∈ 5Z.

Proof. a) From S = M(p, q, r) we get λ′′ = p + 2q + 2r.
b) We have

S = M
(

2k − j + l

5
+ k,

2k − j + l

5
,
2k − j + l

5
− k

)

.
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Theorem. If j ∈ Z and k ∈ Z are such that

2k − j + 1 ∈ 5Z and λ′ = j + kτ ′ ∈
(

−1 +
√

5

4
, 1

)

, (18)

then λ = j + kτ is a scaling factor of P.

Proof. Since 2k − j + 1 ∈ 5Z the matrix corresponding to

S = (j + kτ)π + (j + kτ ′)π′ + π′′ (19)

has integer entries, and S(Ln) ⊂ Ln. From cos
π

5
=

1 +
√

5

4
and (18) it follows

that λ′Ω ⊂ Ω, whence λ′(Wn − t) + t ⊂ Wn, for any n ∈ Z. More than that, there
is δ > 0 such that λ′(Wn − u′) + u′ ⊂ Wn, for any n ∈ Z and for any u′ ∈ E′ with
||u′ − t|| < δ. Since π′(L0) is dense in E′, the set

Qλ = {u | u ∈ L0, ‖π′u − t‖ < δ} (20)

is an infinite set. Let u ∈ Qλ be a fixed element, and let

A : E5 −→ E5 , Ax = u + S(x − u) . (21)

Since
x ∈ Ln

π′x ∈ Wn

}

=⇒
{

Ax ∈ Ln

π′(Ax) ∈ Wn

(22)

from the definition of P it follows that

πx ∈ P =⇒ π(Ax) = πu + λ(πx − πu) ∈ P , (23)

that is, λ is a scaling factor of P and πu a corresponding inflation center.

Denoting 2k− j +1 = 5m we get λ′ = 1− 5m+ k(2+ τ ′). The condition (18) is
satisfied by an infinite number of pairs (j, k) ∈ Z

2. Therefore, any original Penrose
tiling [2] admits an infinite number of scaling factors, and for each of them there is
an infinite number of inflation centers. The self-similarities determined above are
not all the self-similarities of P . For example, one can prove [2] that λ = −τ is a
scaling factor of P by using the linear transformation S = −τπ − τ ′π′ + 2π′′ and
the relation (14).
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