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1 Introduction

Recently, superconformal field theories in various dimensions are attracting
more interest, cf. extensive bibliography in [1]. This makes the classification of
the UIRs of the conformal superalgebras very important. Until recently such clas-
sification was known only for the D = 4 superconformal algebras su(2, 2/1) [2] and
su(2, 2/N) (for arbitraryN) [3]. Recently, the classification for D = 3 (for even N),
D = 5, and D = 6 (for N = 1, 2) was given in [4] (some results being conjectural),
and then the D = 6 case (for arbitrary N) was finalized in [5]. Finally, the cases
D = 9, 10, 11 were treated by finding the UIRs of osp(1/2n), [6].

Once we know the UIRs of a (super-)algebra the next question is to find their
characters, since these give the spectrum which is important for the applications.
This is the question we address in this paper for the UIRs of D = 4 conformal
superalgebras su(2, 2/N). From the mathematical point of view this question is
clear only for representations with conformal dimension above the unitarity thresh-
old viewed as irreps of the corresponding complex superalgebra sl(4/N). But for
su(2, 2/N) even the UIRs above the unitarity threshold are truncated for small
values of spin and isospin.

Thus, we need detailed knowledge about the structure of the UIRs from the
representation–theoretical point of view. Fortunately, such information is contained
in [3,7–9]. The present paper is a more compact version of [1] to which we refer for
more extended introduction.

2 Representations of D = 4 conformal supersymmetry

2.1 The setting

The conformal superalgebras in D = 4 are G = su(2, 2/N). The even subalgebra
of G is the algebra G0 = su(2, 2)⊕u(1)⊕ su(N). We label their physically relevant
representations of G by the signature:

χ = [ d ; j1 , j2 ; z ; r1 , . . . , rN−1 ] , (1)
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where d is the conformal weight, j1, j2 are non-negative (half–)integers which are
Dynkin labels of the finite–dimensional irreps of the D = 4 Lorentz subalgebra
so(3, 1) of dimension (2j1 + 1)(2j2 + 1), z represents the u(1) subalgebra which is
central for G0 (and for N = 4 is central for G itself), and r1, . . . , rN−1 are non-
negative integers which are Dynkin labels of the finite–dimensional irreps of the
internal (or R) symmetry algebra su(N).

We need the standard triangular decomposition:

GCI = G+ ⊕H⊕ G− , (2)

where GCI = sl(4/N) is the complexification of G, G+, G−, resp., are the subalgebras
corresponding to the positive, negative, roots of GCI , resp., andH denotes the Cartan
subalgebra of GCI .

We consider lowest weight Verma modules, so that V Λ ∼= U(G+) ⊗ v0, where
U(G+) is the universal enveloping algebra of G+,Λ ∈ H∗ is the lowest weight, and
v0 is the lowest weight vector v0 such that:

Xv0 = 0 , X ∈ G− , Hv0 = Λ(H)v0 , H ∈ H . (3)

Further, for simplicity we omit the sign ⊗.
The lowest weight Λ is characterized by its values on the Cartan subalgebra H.

It is in 1–to–1 correspondence with χ and we shall write Λ = Λ(χ), or χ = χ(Λ).
If a Verma module V Λ is irreducible then it gives the lowest weight irrep LΛ with

the same weight. If a Verma module V Λ is reducible then it contains a maximal
invariant submodule IΛ and the lowest weight irrep LΛ with the same weight is
given by factorization: LΛ = V Λ/IΛ [10].

Thus, we need first to know which Verma modules are reducible. The reducibil-
ity conditions were given by Kac [10]. A lowest weight Verma module V Λ is re-
ducible only if at least one of the following conditions is true:

(ρ− Λ, β) = m(β, β)/2 , β ∈ ∆+ , (β, β) 6= 0 , m ∈ IN , (4a)

(ρ− Λ, β) = 0 , β ∈ ∆+ , (β, β) = 0 , (4b)

where ∆+ is the positive root system of GCI , ρ ∈ H∗, ρ = ρ0̄ − ρ1̄, where ρ0̄, ρ1̄ are
the half–sums of the even, odd, resp., positive roots, (·, ·) is the standard bilinear
product in H∗.

If a condition from (4a) is fulfilled then V Λ contains a submodule which is a
Verma module V Λ′

with shifted weight given by the pair m,β : Λ′ = Λ +mβ. The
embedding of V Λ′

in V Λ is provided by mapping the lowest weight vector v′0 of V Λ′

to the singular vector vm,β
s in V Λ which is determined by:

Xvm,β
s = 0 , X ∈ G− ,

Hvm,β
s = Λ′(H)v0 , H ∈ H , Λ′ = Λ +mβ .

(5)

Explicitly, vm,β
s is given by an even polynomial in the positive root generators:

vm,β
s = Pm,β v0 , Pm,β ∈ U(G+) . (6)
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Thus, the submodule of V Λ which is isomorphic to V Λ′

is given by U(G+)Pm,βv0.
If a condition from (4b) is fulfilled then V Λ contains a submodule Iβ obtained

from the Verma module V Λ′

with shifted weight Λ′ = Λ + β. In this situation V Λ

contains a singular vector vβ
s which fulfils (5) with m = 1. Explicitly, vβ

s is given
by an odd polynomial in the positive root generators:

vβ
s = P βv0 , P β ∈ U(G+) . (7)

Then we have:
Iβ = U(G+)P βv0 , (8)

which is smaller than V Λ′

= U(G+)v′0 since this polynomial is Grassmannian:

(
P β
)2

= 0 . (9)

To describe this situation we say that V Λ′

is oddly embedded in V Λ.
Note, however, that the above formulae describe also more general situations

when the difference Λ′ − Λ = β is not a root, as used in [8], and below.
The weight shifts Λ′ = Λ+β, when β is an odd root are called odd reflections

in [8], and for future reference will be denoted as:

ŝβ · Λ ≡ Λ + β , (β, β) = 0 , (Λ, β) 6= 0 . (10)

Each such odd reflection generates an infinite discrete abelian group:

W̃β ≡ {(ŝβ)n |n ∈ ZZ} , `((ŝβ)n) = n , (11)

where the unit element is obviously obtained for n = 0, and (ŝβ)−n is the inverse
of (ŝβ)n, and for future use we have also defined the length function `(·) on the

elements of W̃β . This group acts on the weights Λ extending (10):

(ŝβ)n · Λ = Λ + nβ , n ∈ ZZ , (β, β) = 0 , (Λ, β) 6= 0 . (12)

Further, to be more explicit we need to recall the root system of GCI — for
definiteness — as used in [8]. The positive root system ∆+ is comprised from αij ,
1 ≤ i < j ≤ 4 +N . The even positive root system ∆+

0̄
is comprised from αij , with

i, j ≤ 4 and i, j ≥ 5; the odd positive root system ∆+
1̄

is comprised from αij , with
i ≤ 4, j ≥ 5. The simple roots are chosen as in (2.4) of [8]:

γ1 = α12 , γ2 = α34 , γ3 = α25 , γ4 = α4,4+N γk = αk,k+1 , 5 ≤ k ≤ 3+N . (13)

Thus, the Dynkin diagram is:

©
1
−−−

⊗
3
−−−©

5
−−− · · · −−− ©

3+N
−−−

⊗
4
−−−©

2
(14)

This is a non-distinguished simple root system with two odd simple roots [11].
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Let Λ = Λ(χ). The products of Λ with the simple roots are [8]:

(Λ, γa) = −2ja , a = 1, 2 , (15a)

(Λ, γ3) = 1
2 (d+ z′) + j1 −m/N + 1 , (15b)

(Λ, γ4) = 1
2 (d− z′) + j2 −m1 +m/N + 1 , (15c)

z′ ≡ z(1− δN4)
(Λ, γj) = rN+4−j , 5 ≤ j ≤ 3 +N . (15d)

In the case of even roots β ∈ ∆+
0̄

there are six roots αij , j ≤ 4, coming from
the sl(4) factor (which is complexification of su(2, 2)) and N(N − 1)/2 roots αij ,
5 ≤ i, coming form the sl(N) factor (complexification of su(N)).

The reducibility conditions w.r.t. to the positive roots of sl(4) coming from (4)
(denoting m→ nij for β → αij) are:

n12 = 1 + 2j1 ≡ n1 , (16a)

n23 = 1− d− j1 − j2 ≡ n2 , (16b)

n34 = 1 + 2j2 ≡ n3 , (16c)

n13 = 2− d+ j1 − j2 = n1 + n2 , (16d)

n24 = 2− d− j1 + j2 = n2 + n3 , (16e)

n14 = 3− d+ j1 + j2 = n1 + n2 + n3 . (16f)

Thus, reducibility conditions (16a,c) are fulfilled automatically for Λ(χ) with χ
from (1) since we always have: n1, n3 ∈ IN .

The reducibility conditions w.r.t. to the positive roots of sl(N) are all fulfilled
for Λ(χ) with χ from (1). In particular, for the simple roots from those condition
(4) is fulfilled with β → γj , m = 1 + rN+4−j for every j = 5, 6, . . . , N + 3.

The reducibility conditions for the 4N odd positive roots of G are [7, 8]:

d = d1
Nk − zδN4 , (17a)

d1
Nk ≡ 4− 2k + 2j2 + z + 2mk − 2m/N ,

d = d2
Nk − zδN4 , (17b)

d2
Nk ≡ 2− 2k − 2j2 + z + 2mk − 2m/N ,

d = d3
Nk + zδN4 , (17c)

d3
Nk ≡ 2 + 2k − 2N + 2j1 − z − 2mk + 2m/N ,

d = d4
Nk + zδN4 , (17d)

d4
Nk ≡ 2k − 2N − 2j1 − z − 2mk + 2m/N ,

where in all four cases of (17) k = 1, . . . , N , mN ≡ 0, and

mk ≡

N−1∑

i=k

ri , m ≡

N−1∑

k=1

mk =

N−1∑

k=1

krk . (18)
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We shall consider quotients of Verma modules factoring out the even submodules
for which the reducibility conditions are always fulfilled. Before this we recall the
root vectors following [8]. The positive (negative) root vectors corresponding to
αij , (−αij), are denoted by X+

ij , (X−
ij ). In the su(2, 2/N) matrix notation the

convention of [8], (2.7), is:

X+
ij =

{
eji for (i, j) = (3, 4), (3, j), (4, j), 5 ≤ j ≤ N + 4 ,

eij otherwise ,

X−
ij = t(X+

ij ) , (19)

where eij are (N + 4)× (N + 4) matrices with all elements zero except the element
equal to 1 on the intersection of the i–th row and j–th column. The simple root
vectors X+

i follow the notation of the simple roots γi (13):

X+
1 ≡ X

+
12 , X

+
2 ≡ X

+
34 , X

+
3 ≡ X

+
25 , X

+
4 ≡ X

+
4,4+N , X+

k ≡ X
+
k,k+1 , 5 ≤ k ≤ 3+N .

(20)
The mentioned submodules are generated by the singular vectors related to the

even simple roots γ1, γ2,γ5, . . . , γN+3 [8]:

v1
s = (X+

1 )1+2j1v0 , (21a)

v2
s = (X+

2 )1+2j2v0 , (21b)

vj
s = (X+

j )1+rN+4−jv0 , j = 5, . . . , N + 3 . (21c)

The corresponding submodules are IΛ
k = U(G+)vk

s , and the invariant submodule to
be factored out is:

IΛ
c =

⋃

k

IΛ
k (22)

Thus, instead of V Λ we shall consider the factor–modules:

Ṽ Λ = V Λ/IΛ
c (23)

In the factorized modules the singular vectors (21) become null conditions, i.e.,

denoting by |̃Λ〉 the lowest weight vector of Ṽ Λ, we have:

(X+
1 )1+2j1 |̃Λ〉 = 0 , (24a)

(X+
2 )1+2j2 |̃Λ〉 = 0 , (24b)

(X+
j )1+rN+4−j |̃Λ〉 = 0 , j = 5, . . . , N + 3 . (24c)

2.2 Singular vectors and invariant submodules at the unitary reduction points

We first recall the result of [3] (cf. part (i) of the Theorem there) that the following
is the complete list of lowest weight (positive energy) UIRs of su(2, 2/N):

d ≥ dmax = max(d1
N1, d

3
NN ) , (25a)

d = d4
NN ≥ d

1
N1 , j1 = 0 , (25b)

d = d2
N1 ≥ d

3
NN , j2 = 0 , (25c)

d = d2
N1 = d4

NN , j1 = j2 = 0 , (25d)
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where dmax is the threshold of the continuous unitary spectrum. Note that in case
(d) we have d = m1, z = 2m/N −m1, and that it is trivial for N = 1.

Next we note that if d > dmax the factorized Verma modules are irreducible and
coincide with the UIRs LΛ. These UIRs are called long in the modern literature,
cf., e.g., [12–18]. Analogously, we shall use for the cases when d = dmax, i.e.,
(25a), the terminology of semi−short UIRs, introduced in [12,14], while the cases
(25b, c, d) are also called short UIRs, cf., e.g., [13–18].

Next consider in more detail the UIRs at the four distinguished reduction points
determining the list above:

d1
N1 = 2 + 2j2 + z + 2m1 − 2m/N , (26a)

d2
N1 = z + 2m1 − 2m/N , (j2 = 0) , (26b)

d3
NN = 2 + 2j1 − z + 2m/N , (26c)

d4
NN = −z + 2m/N , (j1 = 0) . (26d)

The above reducibilities occur for the following odd roots, resp.:

α3,4+N = γ2 + γ4 , α4,4+N = γ4 , α15 = γ1 + γ3 , α25 = γ3 . (27)

The corresponding singular vectors of Ṽ Λ are [8]:

ṽ1
odd = P3,4+N |̃Λ〉 =

(
X+

4 X
+
2 (h2 − 1)−X+

2 X
+
4 h2

)
|̃Λ〉 = (28a)

=
(
2j2X

+
3,4+N −X

+
4 X

+
2

)
|̃Λ〉 , d = d1

N1 ,

ṽ2
odd = X+

4 |̃Λ〉 , d = d2
N1 , (28b)

ṽ3
odd = P15 |̃Λ〉 =

(
X+

3 X
+
1 (h1 − 1)−X+

1 X
+
3 h1

)
|̃Λ〉 = (28c)

=
(
2j1X

+
15 −X

+
3 X

+
1

)
|̃Λ〉 , d = d3

NN ,

ṽ4
odd = X+

3 |̃Λ〉 , d = d4
NN , (28d)

where X+
3,4+N = [X+

2 , X
+
4 ], X+

15 = [X+
1 , X

+
3 ], h1, h2 ∈ H are Cartan generators

corresponding to the roots γ1, γ2, (cf. [8]), and passing from the (28a), (28c), resp.,
to the next line we have used the fact that h2v0 = −2j2v0, h1v0 = −2j1v0, resp.,
consistently with (15b), (15a), resp.

For j1 = 0, j2 = 0, resp., the vector ṽ1
s , ṽ2

s , resp., is zero — cf. (24a), (24b),
resp. However, then there is another independent singular vector of Ṽ Λ in both
cases. For j1 = 0 it corresponds to the sum of two roots: α15 + α25 (which sum is
not a root!) and is given by formula (D.1) of [8]:

ṽ34 = X+
3 X

+
1 X

+
3 |̃Λ〉 = X+

3 X
+
15 |̃Λ〉 , d = d3

NN , j1 = 0 . (29)

For j2 = 0 there is a singular vector corresponding to the sum of two roots: α3,4+N +
α4,4+N (which sum is not a root) and is given in [8] (cf. the formula before (D.4)):

ṽ12 = X+
4 X

+
2 X

+
4 |̃Λ〉 = X+

4 X
+
3,4+N |̃Λ〉 , d = d1

N1 , j2 = 0 . (30)
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From the expressions of the singular vectors follow, using (8), the explicit for-
mulae for the corresponding invariant submodules Iβ of the modules Ṽ Λ as follows:

I1 = U(G+)P3,4+N |̃Λ〉 = U(G+)
(
X+

4 X
+
2 (h2 − 1)−X+

2 X
+
4 h2

)
|̃Λ〉 = (31a)

= U(G+)
(
2j2X

+
3,4+N −X

+
4 X

+
2

)
|̃Λ〉 , d = d1

N1 , j2 > 0 ,

I2 = U(G+)X+
4 |̃Λ〉 , d = d2

N1 , (31b)

I3 = U(G+)P15 |̃Λ〉 = U(G+)
(
X+

3 X
+
1 (h1 − 1)−X+

1 X
+
3 h1

)
|̃Λ〉 = (31c)

= U(G+)
(
2j1X

+
15 −X

+
3 X

+
1

)
|̃Λ〉 , d = d3

NN , j1 > 0 ,

I4 = U(G+)X+
3 |̃Λ〉 , d = d4

NN , (31d)

I12 = U(G+)ṽ12 = X+
4 X

+
2 X

+
4 |̃Λ〉 , d = d1

N1 , j2 = 0 , (31e)

I34 = U(G+)ṽ34 = X+
3 X

+
1 X

+
3 |̃Λ〉 , d = d3

NN , j1 = 0 . (31f)

2.3 Structure of single−reducibility−condition Verma modules and UIRs

We discuss now the reducibility of Verma modules at the four distinguished points
(26). We note a partial ordering of these four points:

d1
N1 > d2

N1 , d3
NN > d4

NN . (32)

Due to this ordering at most two of these four points may coincide.

In this Subsection we deal with the situations in which no two of the points in
(26) coincide. There are four such situations involving UIRs:

d = dmax = d1
N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3

NN , (33a)

d = d2
N1 > d3

NN , j2 = 0 , (33b)

d = dmax = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > d1

N1 , (33c)

d = d4
NN > d1

N1 , j1 = 0 , (33d)

where for future use we have introduced notation da, dc.

We shall call these cases single−reducibility−condition (SRC) Verma mod-
ules or UIRs, depending on the context.

The factorized Verma modules Ṽ Λ with the unitary signatures from (33) have
only one invariant (odd) submodule which has to be factorized in order to obtain
the UIRs. These odd embeddings are given explicitly as:

Ṽ Λ → Ṽ Λ+β (34)

where we use the convention [7] that arrows point to the oddly embedded module,
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and there are the following cases for β:

β = α3,4+N , for (33a) , j2 > 0 , (35a)

β = α4,4+N , for (33b) , (35b)

β = α15 , for (33c) , j1 > 0 , (35c)

β = α25 , for (33d) , (35d)

β = α3,4+N + α4,4+N , for (33a) , j2 = 0 , (35e)

β = α15 + α25 , for (33c) , j1 = 0 . (35f)

This diagram gives the UIR LΛ contained in Ṽ Λ as follows:

LΛ = Ṽ Λ/Iβ , (36)

where Iβ is given by I1, I2, I3, I4, I12, I34, resp., (cf. (31)), in the cases
(35a, b, c, d, e, f), resp.

It is useful to record the signatures of the shifted lowest weights, i.e., χ′ =
χ(Λ + β). In fact, for future use we give the signature changes for arbitrary roots.
The explicit formulae are [7, 8]:

β = α3,N+5−k , j2 > 0 , rk−1 > 0 ,
χ′ =

[
d+ 1

2 ; j1, j2 −
1
2 ; z + εN ; r1, . . . , rk−1 − 1, rk + 1, . . . , rN−1

]
, (37a)

β = α4,N+5−k , rk−1 > 0 ,
χ′ =

[
d+ 1

2 ; j1, j2 + 1
2 ; z + εN ; r1, . . . , rk−1 − 1, rk + 1, . . . , rN−1

]
, (37b)

β = α1,N+5−k , j1 > 0 , rk > 0 ,
χ′ =

[
d+ 1

2 ; j1 −
1
2 , j2 ; z − εN ; r1, . . . , rk−1 + 1, rk − 1, . . . , rN−1

]
, (37c)

β = α2,N+5−k , rk > 0 ,
χ′ =

[
d+ 1

2 ; j1 + 1
2 , j2 ; z − εN ; r1, . . . , rk−1 + 1, rk − 1, . . . , rN−1

]
, (37d)

β12 = α3,4+N + α4,4+N ,
χ′

12 = [d+ 1; j1, 0; z + 2εN ; r1 + 2, r2, . . . , rN−1] , (37e)

β34 = α15 + α25 ,
χ′

34 = [d+ 1; 0, j2 ; z − 2εN ; r1, . . . , rN−2, rN−1 + 2] . (37f)

εN ≡
2

N
−

1

2
. (38)

For each fixed χ the lowest weight Λ(χ′) fulfills the same odd reducibility condition
as Λ(χ). The lowest weight Λ(χ′

12) fulfils (33b), while the lowest weight Λ(χ′
34)

fulfils (33d).
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2.4 Structure of double−reducibility−condition Verma modules and UIRs

We consider now the four situations in which two of the points in (26) coincide:

d = dmax = dac ≡ 2 + j1 + j2 +m1 = d1
N1 = d3

NN , (39a)

d = d1
N1 = d4

NN = 1 + j2 +m1 , j1 = 0 , (39b)

d = d2
N1 = d3

NN = 1 + j1 +m1 , j2 = 0 , (39c)

d = d2
N1 = d4

NN = m1 , j1 = j2 = 0 . (39d)

We shall call these double−reducibility−condition (DRC) Verma modules or
UIRs. The odd embedding diagrams for the corresponding modules Ṽ Λ are:

Ṽ Λ+β′

↑

Ṽ Λ → Ṽ Λ+β

(40)

(β, β′) = (α15, α3,4+N) , for (39a) , j1j2 > 0 , (41a)

(β, β′) = (α15, α3,4+N + α3,4+N ) , for (39a) , j1 > 0 , j2 = 0 (41b)

(β, β′) = (α15 + α25, α3,4+N ) , for (39a) , j1 = 0 , j2 > 0 , (41c)

(β, β′) = (α15 + α25, α3,4+N + α3,4+N ) , for (39a) , j1 = j2 = 0 , (41d)

(β, β′) = (α25, α3,4+N) , for (39b) , j2 > 0 , (41e)

(β, β′) = (α25, α3,4+N + α4,4+N ) , for (39b) , j2 = 0 , (41f)

(β, β′) = (α15, α4,4+N) , for (39c) , j1 > 0 , (41g)

(β, β′) = (α15 + α25, α4,4+N ) , for (39c) , j1 = 0 , (41h)

(β, β′) = (α25, α4,4+N) , for (39d) . (41i)

This diagram gives the UIR LΛ contained in Ṽ Λ as follows:

LΛ = Ṽ Λ/Iβ,β′

, Iβ,β′

= Iβ ∪ Iβ′

, (42)

where Iβ , Iβ′

are given in (31), accordingly to the cases in (41).
Naturally, the two odd embeddings in (40) are the combination of the different

cases of (34). However, (40) is a piece of a richer picture (given in [7]) which is
important for the character formulae. For the lack of space we omit it referring
to [1].

3 Character formulae of positive energy UIRs

3.1 Character formulae: generalities

In the beginning of this subsection we follow [19]. Let Ĝ be a simple Lie algebra
of rank ` with Cartan subalgebra Ĥ, root system ∆̂, simple root system π̂. Let
Γ, (resp. Γ+), be the set of all integral, (resp. integral dominant), elements of
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Ĥ∗, i.e., λ ∈ Ĥ∗ such that (λ, α∨
i ) ∈ ZZ, (resp. ZZ+), for all simple roots αi,

(α∨
i ≡ 2αi/(αi, αi)). Let V be a lowest weight module with lowest weight Λ and

lowest weight vector v0. It has the following decomposition:

V = ⊕
µ∈Γ+

Vµ , Vµ = {u ∈ V |Hu = (λ+ µ)(H)u ∀H ∈ H} . (43)

(Note that V0 = CIv0.) Let E(H∗) be the associative abelian algebra consisting of
the series

∑
µ∈H∗ cµe(µ), where cµ ∈ CI , cµ = 0 for µ outside the union of a finite

number of sets of the form D(λ) = {µ ∈ H∗|µ ≥ λ}, using some ordering of H∗,
e.g., the lexicographic one; the formal exponents e(µ) have the properties: e(0) = 1,
e(µ)e(ν) = e(µ+ ν).

Then the (formal) character of V is defined by:

chV =
∑

µ∈Γ+

(dimVµ)e(Λ + µ) = e(Λ)
∑

µ∈Γ+

(dim Vµ)e(µ) . (44)

The character formula for Verma modules is [19]:

chV Λ = e(Λ)
∏

α∈∆+

(1− e(α))−1 . (45)

Further we recall the standard reflections in Ĥ∗:

sα(λ) = λ− (λ, α∨)α , λ ∈ Ĥ∗ , α ∈ ∆̂ . (46)

The Weyl group W is generated by the simple reflections si ≡ sαi
, αi ∈ π̂. The

Weyl character formula for the finite–dimensional irreducible LWM LΛ over Ĝ, i.e.,
when Λ ∈ −Γ+, has the form:

chLΛ =
∑

w∈W

(−1)`(w) chV w·Λ , Λ ∈ −Γ+ , (47)

where the dot · action is defined by w · λ = w(λ − ρ) + ρ.
In the case of basic classical Lie superalgebras (except osp(1/2N)) the character

formula for Verma modules is [10]:

chV Λ = e(Λ)



∏

α∈∆+

0̄

(1− e(α))−1






∏

α∈∆+

1̄

(1 + e(α))


 . (48)

Note that this may be written as:

chV Λ = chV Λ
0 ch V̂ Λ , ch V̂ Λ ≡

∏

α∈∆+

1̄

(1 + e(α)) , (49)

where chV Λ
0 is the character of the restriction of V Λ to the even subalgebra, and

V̂ Λ ≡
(
U(GCI

+)/(GCI
+)(0)

)
|̃Λ〉. Obviously, V̂ Λ may be viewed as the result of all

10
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possible application of the 4N odd generators X+
a,4+k on |Λ〉. Thus, V̂ Λ has 24N

states (including the vacuum). Explicitly, the basis of V̂ Λ is [9]:

Ψε̄ =

(
1∏

k=N

(X+
1,4+k)ε1,4+k

)(
1∏

k=N

(X+
2,4+k)ε2,4+k

)
×

×

(
N∏

k=1

(X+
3,4+k)ε3,4+k

)(
N∏

k=1

(X+
4,4+k)ε4,4+k

)
|̃Λ〉 , εaj = 0, 1 , (50)

where ε̄ denotes the set of all εij .
The odd null conditions entwine with the even null conditions as we shall see.

The even null conditions carry over from the even null conditions (24) of Ṽ Λ:

(X+
1 )1+2j1 |Λ〉 = 0 , (51a)

(X+
2 )1+2j2 |Λ〉 = 0 , (51b)

(X+
j )1+rN+4−j |Λ〉 = 0 , j = 5, . . . , N + 3 , (51c)

where by |Λ〉 we denote the lowest weight vector of the UIR LΛ.
For future use we introduce notation for the levels of the different chiralities εi

and the overall level ε

εi =

N∑

k=1

εi,4+k , i = 1, 2, 3, 4 , ε = ε1 + ε2 + ε3 + ε4 . (52)

3.2 Character formulae for the long UIRs

As we mentioned if d > dmax there are no further reducibilities, and the UIRs
LΛ = Ṽ Λ are called long since L̂Λ may have the maximally possible number of
states 24N (including the vacuum state). However, the actual number of states
may be less than 24N states due to the fact that — depending on the values of ja
and rk — not all actions of the odd generators on the vacuum would be allowed.
The latter is obvious from formulae (37). Using the latter we can give the resulting
signature of the state Ψε̄:

χ (Ψε̄) =
[
d+ 1

2ε ; j1 + 1
2 (ε2 − ε1), j2 + 1

2 (ε4 − ε3) ; z + εN(ε3 + ε4 − ε1 − ε2) ;
. . . , ri + ε1,N+4−i − ε1,N+5−i + ε2,N+4−i − ε2,N+5−i−
−ε3,N+4−i + ε3,N+5−i − ε4,N+4−i + ε4,N+5−i , . . .

]
. (53)

Thus, only if j1, j2 ≥ N/2 and ri ≥ 4 (for all i) the number of states is 24N [3],
and the character formula is:

chLΛ = chL0
Λ ch V̂ Λ , (54a)

j1, j2 ≥ N/2 , ri ≥ 4 , i = 1, . . . , N − 1 , (54b)

where chL0
Λ denotes the character of the restriction of LΛ to the even subalgebra.

11
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The general formula for chLΛ shall be written in a similar fashion:

chLΛ = chL0
Λ ch L̂Λ . (55)

Moreover, from now on we shall write only the formulae for ch L̂Λ. Thus, formula
(54) may be written equivalently as:

ch L̂Λ = ch V̂ Λ , j1, j2 ≥ N/2 , ri ≥ 4 ∀ i . (56)

If the auxiliary conditions (54b) are not fulfilled then a careful analysis is nec-
essary. To simplify the exposition we classify the states by the following quantities:

εc
j ≡ ε1 − ε2 ,
εa

j ≡ ε3 − ε4 ,

εi
r ≡ ε1,5+i + ε2,5+i + ε3,4+i + ε4,4+i − ε1,4+i − ε2,4+i − ε3,5+i − ε4,5+i , (57)

i = 1, . . . , N − 1 .

This gives the following necessary conditions on εij for a state to be allowed:

εc
j ≤ 2j1 , (58a)

εa
j ≤ 2j2 , (58b)

εi
r ≤ rN−i , i = 1, . . . , N − 1 . (58c)

These conditions are also sufficient only for N = 1. The exact conditions are:
Criterion: The necessary and sufficient conditions for the state Ψε̄ of level ε to
be allowed are that conditions (58) are fulfilled and that the state is a descendant
of an allowed state of level ε− 1. ♦

The second part of the Criterion will take care first of all of chiral (or anti-chiral)
states when some εaj contribute to opposing sides of the inequalities in (58a) and
(58c), (or (58b) and (58c)). This happens for j1 = ri = 0, (or j2 = ri = 0).

We shall give now the most important such occurrences. Take first chiral states,
i.e., all ε3,4+k = ε3,4+k = 0. Fix i = 1, . . . , N−1. It is easy to see that the following
states are not allowed [1]:

ψij = φij |Λ〉 = X+
1,i+4X

+
2,i+5X

+
a1,i+6 . . . X

+
aj−1,i+4+j |Λ〉 , an = 1, 2 , (59)

j = 1, . . . , N − i , j1 = rN−i = · · · = rN−i−j+1 = 0 ,
in addition, for N > 2 , i > 1 holds rN−i+1 6= 0 .

Consider now anti-chiral states, i.e., such that ε1,4+k = ε2,4+k = 0, for all
k = 1, . . . , N . Fix i = 1, . . . , N − 1. Then the following states are not allowed:

ψ′
ij = φ′ij |Λ〉 = X+

3,i+5X
+
4,i+4X

+
b1,i+3 . . .X

+
bj−1,i+5−j |Λ〉 , bn = 3, 4 , (60)

j = 1, . . . , i , j2 = rN−i = · · · = rN−i+j−1 = 0 ,
in addition, for N > 2 , i > 1 holds rN−i−1 6= 0 .

Furthermore, any combinations of φij and φ′i′j′ are not allowed.
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Note that for N ≥ 4 the states in (59), (60) do not exhaust the states forbidden
by our Criterion. For example, for N = 4 there are the following forbidden states:

ψ4 = φ4|Λ〉 = X+
28X

+
17X

+
16X

+
25|Λ〉 , j1 = r1 = r2 = r3 = 0 , (61a)

ψ′
4 = φ′4|Λ〉 = X+

45X
+
36X

+
37X

+
48|Λ〉 , j2 = r1 = r2 = r3 = 0 . (61b)

Summarizing the discussion so far, the general character formula may be written
as follows:

ch L̂Λ = ch V̂ Λ −R , d > dmax , (62)

R = e(V̂ Λ
excl) =

∑

excluded

states

e(Ψε̄) ,

e(Ψε̄) =

(
1∏

k=N

e(α1,4+k)ε1,4+k

)(
1∏

k=N

e(α2,4+k)ε2,4+k

)
×

×

(
N∏

k=1

e(α3,4+k)ε3,4+k

)(
N∏

k=1

e(α4,4+k)ε4,4+k

)
,

where the counter–terms denoted by R are determined by V̂ Λ
excl which is the col-

lection of all states (i.e., collection of εjk) which violate the conditions (58), or
are impossible in the sense of (59) and/or (60). Of course, each excluded state is
accounted for only once even if it is not allowed for several reasons.

Finally, we consider two important conjugate special cases. First, the anti-chiral
sector of R–symmetry scalars with j2 = 0. Taking into account (58b, c) and our
Criterion it is easy to see that the appearance of the generators X+

3,4+k is restricted

as follows. The generator X+
3,4+N may appear only in the state

X+
3,4+NX

+
4,4+N |Λ〉 (63)

and its descendants. The generator X+
3,3+N may only appear either in states de-

scendant to the state (63) or in the state

X+
3,3+NX

+
4,4+N |Λ〉 (64)

and its descendants including only generators X+
a,4+N−`, a = 3, 4, ` > 1. Further,

fix ` such that 1 < ` ≤ N − 1. The generator X+
3,4+N−` may only appear either in

states containing generators X+
3,4+N−j , where 0 ≤ j < `, or in the state

X+
3,4+N−`X

+
4,5+N−`X

+
4,6+N−` · · ·X

+
4,4+N |Λ〉 (65)

and its descendants including only generators X+
a,4+N−`′ , a = 3, 4, `′ > `.

The anti-chiral part of the basis is further restricted. Namely, there are only N
anti-chiral states that can be built from the generators X+

4,4+k alone:

X+
4,5+N−kX

+
4,6+N−k · · ·X

+
4,4+N |Λ〉 , k = 1, . . . , N , j2 = ri = 0 ∀ i . (66)
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This follows from (58c) which for such states becomes ε4,4+N−i ≤ ε4,5+N−i for
i = 1, . . . , N − 1.

The chiral sector of R–symmetry scalars with j1 = 0 is obtained from the above
by conjugation.

3.3 Character formulae of SRC UIRs

•a d = d1
N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3

NN .
• Let first j2 > 0. In these semi–short SRC cases holds the odd null condition
following from (28a):

P3,4+N |Λ〉 =
(
2j2X

+
3,4+N −X

+
4 X

+
2

)
|Λ〉 = 0 . (67)

Clearly, condition (67) means that the generator X+
3,4+N is eliminated from the

basis that is built on the lowest weight vector |Λ〉. Thus, for N = 1 and if r1 > 0
for N > 1 the character formula is:

ch L̂Λ =
∏

α∈∆
+

1̄
α6=α3,4+N

(1 + e(α))−R , j2r1 > 0 . (68)

There are no counter–terms when j1 ≥ N/2, j2 ≥ (N − 1)/2 and ri ≥ 4 (for all i),
and then the number of states is 24N−1.

When there are no counter–terms (also for the complex sl(4/N) case) this for-
mula follows easily from (36). Indeed, in the case at hand Iβ = I1, (cf. (31a));
then from LΛ = Ṽ Λ/I1 follows L̂Λ = V̂ Λ/Î1 and:

ch L̂Λ = ch V̂ Λ − ch Î1 , (69)

where Î1 is the projection of I1 to the odd sector. Naively, the character of Î1

should be given by the character of V̂ Λ+α3,4+N , however, as discussed in general —
cf. (8), I1 is smaller than V̂ Λ+α3,4+N and its character is given with a prefactor:

ch Î1 =
1

1 + e(α3,4+N )
ch V̂ Λ+α3,4+N =

e(α3,4+N )

1 + e(α3,4+N )
ch V̂ Λ . (70)

Now (68) (with R = 0) follows from the combination of (69) and (70).
Formula (68) may also be described by using the odd reflection (10) with β =

α3,4+N :

ch L̂Λ = ch V̂ Λ −
1

1 + e(α3,4+N )
ch V̂ ŝα3,4+N

·Λ −R = (71a)

=
∑

ŝ∈Ŵα3,4+N

(−1)`(ŝ)ŝ · ch V̂ Λ −R , (71b)

where Ŵβ ≡ {1, ŝβ} is a two–element semi-group restriction of W̃β , and we have
formalized further by introducing notation for the action of an odd reflection on
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characters:

ŝβ · chV
Λ =

1

1 + e(β)
chV ŝβ ·Λ =

1

1 + e(β)
chV Λ+β =

e(β)

1 + e(β)
chV Λ . (72)

It is natural to introduce the restriction Ŵβ since only the identity element of

W̃β and the generator ŝβ act nontrivially because the action ŝβ on characters is
nilpotent:

(ŝβ)2 · chV Λ = 0 . (73)

In fact, we shall need more general formula for the action of odd reflections on
polynomials P from E(H∗). Thus, instead of (72) we shall define the action of ŝβ

on P as a homogeneity operator treating e(β) as a variable:

ŝβ · P ≡ e(β)
∂

∂e(β)
P , (74)

where β may be a root or the sum of roots. Obviously, if P is a monomial which
contains a multiplicative factor 1 + e(β) the action (74) is equivalent to (72).

In particular, we shall show that in many cases character formulae (68), (71)
may be written as follows:

ch L̂Λ =
∑

ŝ∈Ŵβ

(−1)`(ŝ)ŝ ·
(
ch V̂ Λ −Rlong

)
, (75)

where Rlong represents the counter–terms for the long superfields for the same
values of j1 and ri as Λ, while the value of j2 is zero when j2 from Λ is zero,
otherwise it has to be the generic value j2 ≥ N/2.

Writing (68) as (71) (or (75)) may look as a complicated way to describe the
cancellation of a factor from the character formula for V̂ Λ, however, first of all it is
related to the structure of Ṽ Λ given by (36), and furthermore may be interpreted
— when there are no counter–terms — as the following decomposition:

V̂ Λ = L̂Λ ⊕ L̂Λ+β , (76)

for β = α3,4+N . Indeed, for generic signatures L̂Λ+β is isomorphic to L̂Λ as a
vector space (this is due to the fact that V Λ+β has the same reducibilities as V Λ,
cf. Section 2), they differ only by the vacuum state. Thus, when there are no
counter–terms, both L̂Λ and L̂Λ+β have the same 24N−1 states.

It is more important that there is a similar decomposition valid for many cases
beyond the generic, i.e., we have:

(
L̂long

)
|d=da

= L̂Λ ⊕ L̂Λ+α3,4+N
, N = 1 or r1 > 0 for N > 1 , (77)

where L̂long is a long superfield with the same values of j1 and ri as Λ, while the
value of j2 has to be specified, and equality is as vector spaces.
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For N > 1 there are possible additional truncations of the basis. To make
the exposition easier we need additional notation. Let i0 be an integer such that
0 ≤ i0 ≤ N − 1, and ri = 0 for i ≤ i0, and if i0 < N − 1 then ri0+1 > 0.

Let now N > 1 and i0 > 0; then the generators X+
3,4+N−i, i = 1, . . . , i0, are

eliminated from the basis. This follows from the following recursive null conditions:

P3,4+N−i|Λ〉 =
(
2j2X

+
3,4+N−i −X

+
4,4+N−iX

+
2

)
|Λ〉 = 0 , i ≤ i0 . (78)

From the above follows that for i0 > 0 the decomposition (77) can not hold.
Indeed, the generatorsX+

3,4+N−i, i = 1, . . . , i0, are eliminated from the irrep L̂Λ due
to the fact that we are at a reducibility point, but there is no reason for them to be
eliminated from the long superfield. Certainly, some of these generators are present
in the second term L̂Λ+α3,4+N

in (77), but that would be only those which in the

long superfield were in states of the kind: ΦX+
3,4+N |Λ〉, and, certainly, such states

do not exhaust the occurrence of the discussed generators in the long superfield.
Symbolically, instead of the decomposition (77) we shall write:

(
L̂long

)
|d=da

= L̂Λ ⊕ L̂Λ+α3,4+N
⊕ L̂′

Λ , N > 1 , i0 > 0 , (79)

where we have represented the excess states by the last term with prime. With the
prime we stress that this is not a genuine irrep, but just a book–keeping device.
Formulae as (79) in which not all terms are genuine irreps shall be called quasi-

decompositions.
The corresponding character formula is:

ch L̂Λ =
∏

α∈∆
+

1̄
α6=α3,5+N−k
k=1,...,1+i0

(1 + e(α)) −R = (80a)

=
∑

ŝ∈Ŵ a
i0

(−1)`(ŝ)ŝ · ch V̂ Λ −R = (80b)

=
∑

ŝ∈Ŵ a
i0

(−1)`(ŝ)ŝ ·
(
ch V̂ Λ −Rlong

)
, (80c)

Ŵ a
i0 ≡ Ŵα3,N+4

× Ŵα3,N+3
× · · · × Ŵα3,N+4−i0

. (80d)

The restrictions (58) used to determine the counter–terms are, of course, with
ε3,5+N−k = 0, k = 1, . . . , 1 + i0. Formulae (68), (71), (75) are special cases of

(80a, b, c), resp., for i0 = 0. The maximal number of states in L̂Λ is 24N−1−i0 . This
is the number of states that is obtained from the action of the Weyl group Ŵ a

i0
on

ch V̂ Λ, while the actual counter–term is obtained from the action of the Weyl group
on Rlong.

In the extreme case of R–symmetry scalars: i0 = N − 1, i.e., ri = 0, i =
1, . . . , N − 1, or, equivalently, m1 = 0 = m, all the N generators X+

3,4+k are
eliminated. The character formula is again (80) taken with i0 = N − 1.
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• Let now j2 = 0. Then all null conditions above follow from (24b), so these
conditions do not mean elimination of the mentioned vectors. As we know in
this situation we have the singular vector (30) which leads to the following null
condition:

X+
3,4+NX

+
4,4+N |Λ〉 = X+

4 X
+
2 X

+
4 |Λ〉 = 0 . (81)

The state in (81) and all of its 24N−2 descendants are zero for any N . Thus, the
character formula is similar to (71), but with α3,4+N replaced by β12 = α3,4+N +
α4,4+N :

ch L̂Λ =
∑

ŝ∈Ŵβ12

(−1)`(ŝ)ŝ ·
(
ch V̂ Λ −Rlong

)
, N = 1 or r1 > 0 , (82)

where Ŵβ12
≡ {1, β12}. Note that for N = 1 formula (82) is equivalent to (68).

Here holds a decomposition similar to (77):
(
L̂long

)
|d=da

= L̂Λ ⊕ L̂Λ+β12
, N = 1 or r1 > 0 for N > 1 , (83)

where L̂long is with the same values of j1, j2(= 0), ri as Λ. Note, however, that the

UIR L̂Λ+β12
belongs to type b below.

There are more eliminations for N > 1 when i0 > 0. For instance we can show
that all states obtained as in (65) considered for ` = 1, . . . , i0 are not allowed [1].
From this follows that if i0 > 0 the decomposition (83) does not hold. Instead,
there is a quasi-decomposition similar to (79).

We can be more explicit in the case when all ri = 0. In that case all the vectors
X+

3,5+N−k are eliminated from all anti-chiral states [1].
The anti-chiral part of the basis is further restricted. As we know, when j2 =

ri = 0 ∀ i, there are only N anti-chiral states that can be built from the generators
X+

4,4+k alone, given in (66). Thus the corresponding character formula is:

ch L̂Λ =

N∑

k=1

k∏

i=1

e(α4,5+N−i) +
∏

α∈∆
+

1̄
ε1+ε2>0

(1 + e(α)) −R , j2 = ri = 0 ∀ i . (84)

•b d = d2
N1 = z + 2m1 − 2m/N > d3

NN , j2 = 0.
In these short single–reducibility–condition cases holds the odd null condition (fol-
lowing from the singular vector (28b))

X+
4 |Λ〉 = X+

4,4+N |Λ〉 = 0 . (85)

Since j2 = 0 from (24b) and (85) follows the additional null condition:

X+
3,4+N |Λ〉 = [X+

2 , X
+
4 ] |Λ〉 = 0 . (86)

For N > 1 and r1 > 2 each of these UIRs enters as the second term in decom-
position (83), when the first term is an UIR of type a with j2 = 0, as explained
above.
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Further, for N > 1 there are additional recursive null conditions if ri = 0, i ≤ i0
which follow from (24c) and (86):

X+
3,4+N−i|Λ〉 = [X+

3,5+N−i, X
+
4+N−i] |Λ〉 = 0 , rj = 0 , 1 ≤ j ≤ i ≤ i0 , (87a)

X+
4,4+N−i|Λ〉 = [X+

4,5+N−i, X
+
4+N−i] |Λ〉 = 0 , rj = 0 , 1 ≤ j ≤ i ≤ i0 . (87b)

Thus, 2(1 + i0) generators X+
3,5+N−k, X+

4,5+N−k, k = 1, . . . , 1 + i0, are eliminated.

The maximal number of states in L̂Λ is 24N−2−2i0 .
The corresponding character formula is:

ch L̂Λ =
∑

ŝ∈Ŵ b
i0

(−1)`(ŝ)ŝ · ch V̂ Λ −R , (88a)

Ŵ b
i0 ≡ Ŵα3,N+4

× Ŵα3,N+3
× · · · × Ŵα3,N+4−i0

× (88b)

×Ŵα4,N+4
× Ŵα4,N+3

× · · · × Ŵα4,N+4−i0
, j2 = ri = 0 , i ≤ i0 ,

where determining the counter–terms we use εa,4+k = 0, a = 3, 4, k = 1, . . . , 1+ i0.
In the case of R–symmetry scalars (i0 = N − 1) we have:

X+
3,4+k|Λ〉 = 0 , X+

4,4+k|Λ〉 = 0 , k = 1, . . . , N , ri = 0 ∀ i . (89)

The character formula is (88) taken with 1 + i0 = N . These UIRs should be called
chiral since all anti-chiral generators are eliminated.

•c d = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > d1

N1.
•d d = d4

NN = −z + 2m/N > d1
N1, j1 = 0.

These cases are conjugate to the cases a, b, resp. All results may be obtained by
the substitutions: j1 ←→ j2, ri ←→ rN−i, z ←→ −z, αa,4+k ←→ α4−a,N+5−k,
a = 1, 2, k = 1, . . . , N , and so we shall omit them here, cf. [1].

3.4 Character formulae of DRC UIRs

Let first N > 1 and r1rN − 1 > 0, (i.e., i0 = i′0 = 0). Then holds the following
character formula:

ch L̂Λ =
∑

ŝ∈Ŵβ,β′

(−1)`(ŝ)ŝ · ch V̂ Λ −R = (90a)

= ch V̂ Λ −
1

1 + e(β)
ch V̂ Λ+β −

1

1 + e(β′)
ch V̂ Λ+β′

+

+
1

(1 + e(β))(1 + e(β′))
ch V̂ Λ+β+β′

−R , (90b)

Ŵβ,β′ ≡ Ŵβ × Ŵβ′ . (90c)

The above formula is proved similarly to what we had in the SRC cases, however,
it takes into account the richer structure given explicitly already in the paper [7].
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The proof is as follows [1]: The two terms with minus sign on the first line of (90b)
take into account the factorization of the oddly embedded submodules Iβ , Iβ′

, cf.
(42). The nontrivial moment is the contribution of the module V̂ Λ+β+β′

. It is oddly
embedded in V̂ Λ via both submodules V̂ Λ+β and V̂ Λ+β′

, [7], and its contribution
is taken out two times — once with Iβ , and a second time with Iβ′

. Thus, we need
the term with plus sign on the second line of (90b) to restore its contribution once.
We can not apply the same kind of arguments for N = 1, nevertheless, formula
(90) holds also then for the case (41a), cf. Appendix A.1. of [1].

•ac d = dmax = d1
N1 = d3

NN = dac ≡ 2 + j1 + j2 +m1.

In these semi–short DRC cases hold the null condition (67) and its conjugate. In
addition, for N > 1 if ri = 0, i = 1, . . . , i0, holds (78) and if rN−i = 0, i = 1, . . . , i′0,
holds the conjugate to (78).

There are two basic situations. The first is when i0 + i′0 ≤ N − 2. This means
that not all ri are zero and all eliminations are as described separately for cases •a
and •c. These semi–short UIRs may be called Grassmann–analytic following [14],
since odd generators from different chiralities are eliminated. The maximal number
of states in L̂Λ is 24N−2−i0−i′0 .

The second is when i0 + i′0 ≤ N − 2 does not hold which means that all ri are
zero, and in fact we have i0 = i′0 = N − 1 and all generators X+

1,4+k and X+
3,4+k are

eliminated. The maximal number of states in L̂Λ is 22N .

• For j1j2 > 0 the corresponding character formulae are combinations of (80) and
its conjugate [1]:

ch L̂Λ =
∑

ŝ∈Ŵ ac

i0,i′
0

(−1)`(ŝ)ŝ ·
(
ch V̂ Λ −Rlong

)
, (91a)

Ŵ ac
i0 ,i′0
≡ Ŵ a

i0 × Ŵ
c
i′0
, j1j2 > 0 , (91b)

either i0 + i′0 ≤ N − 2 ,
ri = 0 , i = 1, 2, . . . , i0, N − i

′
0, N − i

′
0 + 1, . . . , N − 1 ,

ri > 0 , i = i0 + 1, N − i′0 − 1 ,
or i0 = i′0 = N − 1 , ri = 0 ∀ i .

The last subcase is of R–symmetry scalars. It is also the only formula in the case
under consideration — ac — valid for N = 1 (where there are no counterterms).

For N > 1 and i0 = i′0 = 0 formula (91) is equivalent to (90) with β = α15,
β′ = α3,4+N . Also holds the following decomposition:

(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+α15
⊕ L̂Λ+α3,4+N

⊕ L̂Λ+α15+α3,4+N
, r1rN−1 > 0 , (92)

L̂long being a long superfield with the same values of ri as Λ and with j1, j2 ≥ N/2.

• For j1 > 0, j2 = 0 the corresponding character formulae are combinations of
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(82) and the conjugate to (80) [1]:

ch L̂Λ =
∑

ŝ∈Ŵ a′c

i′
0

(−1)`(ŝ)ŝ · ch V̂ Λ −R = (93a)

=
∑

ŝ∈Ŵ a′c

i′
0

(−1)`(ŝ)ŝ ·
(
ch V̂ Λ −Rlong

)
, r1 > 0 , (93b)

Ŵ a′c
i′0
≡ Ŵβ12

× Ŵ c
i′0
, β12 = α3,4+N + α4,4+N . (93c)

For i0 = i′0 = 0 holds the decomposition:

(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+α15
⊕ L̂Λ+β12

⊕ L̂Λ+α15+β12
, r1rN−1 > 0 , (94)

where L̂long is a long superfield with the same values of j2(= 0), ri as Λ and with

j1 ≥ N/2. Note that the UIR L̂Λ+α15
is also of the type ac under consideration,

while the last two UIRs are short from type bc considered below.
For R–symmetry scalars we combine (84) and the conjugate to (80a):

ch L̂Λ =

N∑

k=1

k∏

i=1

e(α4,5+N−i) +
∏

α∈∆
+

1̄
α6=α1,4+k ,

k=1,...,N
ε2>0

(1 + e(α)) −R , ri = 0 ∀ i . (95)

• The case j1 = 0, j2 > 0 is obtained from the previous one by conjugation. Here
for i0 = i′0 = 0 holds the decomposition:

(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+α3,4+N
⊕ L̂Λ+β34

⊕ L̂Λ+α3,4+N+β34
, r1rN−1 > 0 , (96)

where L̂long is a long superfield with the same values of j1(= 0), ri as Λ and with

j2 ≥ N/2. Note that the UIR L̂Λ+α3,4+N
is again of the type ac under consideration,

while the last two UIRs are actually from type ad considered below.
• For j1 = j2 = 0 the corresponding character formulae are combinations of (82)
and its conjugate:

ch L̂Λ =
∑

ŝ∈Ŵ a′c′

i′
0

(−1)`(ŝ)ŝ ·
(
ch V̂ Λ −Rlong

)
, r1rN−1 > 0 , (97a)

Ŵ a′c′

i′0
≡ Ŵβ12

× Ŵβ34
. (97b)

For i0 = i′0 = 0 holds the decomposition:

(
L̂long

)
|d=dac

= L̂Λ ⊕ L̂Λ+β12
⊕ L̂Λ+β34

⊕ L̂Λ+β12+β34
, r1rN−1 > 0 , (98)
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where L̂long is a long superfield with the same values of j1(= 0), j2(= 0), ri as Λ.

Note that the UIR L̂Λ+β12
is of the type bc, L̂Λ+β34

is of the type ad, L̂Λ+β12+β34

is of the type bd, these three being considered below.
For R–symmetry scalars we combine (84) and its conjugate:

ch L̂Λ =
N∑

k=1

k∏

i=1

e(α2,4+i) +
N∑

k=1

k∏

i=1

e(α4,5+N−i)+

+
∏

α∈∆
+

1̄
ε1+ε2>0

ε3+ε4>0

(1 + e(α))−R , ri = 0 ∀ i . (99)

•ad d = d1
N1 = d4

NN = 1 + j2 +m1, j1 = 0.
In these short DRC cases hold the three null conditions (67), and the conjugates
to (85) and (86). In addition, for N > 1 if ri = 0, i = 1, . . . , i0, hold (78) and if
rN−i = 0, i = 1, . . . , i′0, hold the conjugate of (87).

If i0+i′0 ≤ N−2 all eliminations are as described separately for cases •a and •d.
All these are Grassmann–analytic UIRs. The maximal number of states in L̂Λ is
24N−3−i0−2i′0 . Interesting subcases are the so-called BPS states, cf., [14,17,20–25].
They are characterized by the number κ of odd generators which annihilate them —
then the corresponding case is called κ

4N –BPS state. For example consider N = 4
and 1

4–BPS cases with z = 0 ⇒ d = 2m/N . One such case is obtained for i0 = 1,
i′0 = 0, j2 > 0, then d = 1

2 (2r2 + 3r3), r1 = 0, r2 > 0, r3 = 2(1 + j2).
For j2m1 > 0 the corresponding character formula is a combination of (80) and

the conjugate of (88):

ch L̂Λ =
∑

ŝ∈Ŵ ad

i0,i′
0

(−1)`(ŝ)ŝ · ch V̂ Λ −R , (100a)

Ŵ ad
i0 ,i′0
≡ Ŵ a

i0 × Ŵ
d
i′0
, j2m1 > 0 , (100b)

ri = 0 , i = 1, 2, . . . , i0, N − i
′
0, N − i

′
0 + 1, . . . , N − 1 ,

ri > 0 , i = i0 + 1, N − i′0 − 1 , .

For i0 = i′0 = 0 some of these UIRs appear (up to two times) in the decomposition
(96) [1].

For j2 = 0, m1 > 0 the corresponding character formula is a combination of
(82) and the conjugate of (88a):

ch L̂Λ =
∑

ŝ∈Ŵ a′d

i′
0

(−1)`(ŝ)ŝ · ch V̂ Λ −R , (101a)

Ŵ a′d
i′0
≡ Ŵβ12

× Ŵ d
i′0
, (101b)

where β12 = α3,4+N + α4,4+N . For i0 = i′0 = 0 some of these UIRs appear in the
decomposition (98) or (96) [1].
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In the case of R–symmetry scalars we have i0 = i′0 = N − 1, κ = 3N and all
generators X+

1,4+k, X+
2,4+k, X+

3,4+k are eliminated. Here holds d = −z = 1 + j2.
These anti-chiral irreps form one of the three series of massless UIRs; they are
denoted χ+

s , s = j2 = 0, 1
2 , 1, . . ., in Section 3 of [3]. Besides the vacuum they

contain only N states in L̂Λ given by (66) for k = 1, . . . , N . These should be called
ultrashort UIRs. The character formula can be written most explicitly:

ch L̂Λ = 1 +

N∑

k=1

k∏

i=1

e(α4,5+N−i) , j1 = ri = 0 ∀ i , (102)

and it is valid for any j2. In the case under consideration — ad — only the last
character formula is valid for N = 1.
•bc d = d2

N1 = d3
NN = 1 + j1 +m1, j2 = 0, z = 2m/N −m1 + 1 + j1.

This case is conjugate to the previous one and all results may be obtained by the
substitutions given for the SRC conjugate cases.
•bd d = d2

N1 = d4
NN = m1, j1 = j2 = 0, z = 2m/N −m1.

In these short DRC cases hold the four null conditions (85), (86), and their conju-
gates.

For N = 1 this is the trivial irrep with d = z = 0. This follows from the fact
that since d = j1 = j2 = 0 also holds the even reducibility condition (16b) (and
consequently (16d, e, f)). Thus, we have the null conditions: X+

k |Λ〉 = 0 for all
simple root generators (and consequently for all generators) and the irrep consists
only of the vacuum |Λ〉.

For N > 1 the situation is non-trivial. In addition to the mentioned conditions,
and if ri = 0, i = 1, . . . , i0, hold (87) and if rN−i = 0, i = 1, . . . , i′0, hold the
conjugates of (87).

If i0 + i′0 ≤ N − 2 all eliminations are as described separately for cases •b and
•d. These are also Grassmann–analytic UIRs. The maximal number of states in
L̂Λ is 24N−4−2i0−2i′0 . For N = 4 for the BPS cases we take z = 1

2 (r3 − r1) = 0 ⇒
d = 2r1 + r2. In the 1

4–BPS case we have i0 = i′0 = 0, r1 = r3 > 0.
For i0 = i′0 = 0 some of these UIRs appear in the decomposition (98) [1].
Most interesting is the case i0 + i′0 = N − 2, then there is only one non-zero ri,

namely, r1+i0 = rN−1−i′
0
> 0, while the rest ri are zero. Thus, the Young tableau

parameters are: m1 = r1+i0 , m = (1 + i0)r1+i0 .
An important subcase is when d = m1 = 1, then m = i0 + 1 = N − 1 − i′0,

ri = δmi, and these irreps form the third series of massless UIRs. In Section 3
of [3] they are denoted χ′

n, n = m ≥ 1
2N , (z = 2n/N − 1), χ′+

n , n = N −m ≥ 1
2N ,

(z = 1 − 2n/N). Note that for even N there is the coincidence: χ′
n = χ′+

n , where
n = m = N −m = N/2. Here we shall parametrize these UIRs by the parameter
i0 = 0, 1, . . . , N − 1.

Another subcase here are 1
2–BPS states for even N with z = 0 ⇒ d = m1 =

2m/N ⇒ i0 = i′0 = N/2− 1 ⇒ m1 = rN/2, m = N
2 rN/2. These are also massless

only if rN/2 = 1, which is the self-conjugate case: χ′
n, n = N/2. For N = 4 we

have: i0 = i′0 = 1, r1 = r3 = 0, r2 > 0, which is also massless if r2 = 1.
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Finally, in the case of R–symmetry scalars we have i0 = i′0 = N − 1 and all 4N
odd generators X+

1,4+k, X+
2,4+k, X+

3,4+k, X+
4,4+k, are eliminated. More than this,

all quantum numbers are zero, (cf. (39d)), and this is the trivial irrep. The latter
follows exactly as explained above for the case N = 1.

For m1 > 0 the corresponding character formula is a combination of (88) and
its conjugate:

ch L̂Λ =
∑

ŝ∈Ŵ bd

i0,i′
0

(−1)`(ŝ)ŝ · ch V̂ Λ −R , (103a)

Ŵ bd
i0 ,i′0
≡ Ŵ b

i0 × Ŵ
d
i′0
, (103b)

ri = 0 , i = 1, 2, . . . , i0, N − i
′
0, N − i

′
0 + 1, . . . , N − 1 ,

ri > 0 , i = i0 + 1, N − i′0 − 1 ,

where R designates the counter–terms due to our Criterion, in particular, due to
(58) taken with εa,N+1−k = 0, a = 1, 2, k = 1, . . . , 1 + i′0, εbj = 0, b = 3, 4,
k = j, . . . , 1 + i0.

Also for the third series of massless UIRs we can give a much more explicit
character formula without counter–terms. Fix the parameter i0 = 0, 1, . . . , N − 2.
Then there are only the following states in L̂Λ:

X+
2,N+4−j · · ·X

+
2,N+4−i0

|Λ〉 , j = 0, 1, . . . , i0 , (104a)

X+
4,4+k · · ·X

+
4,N+3−i0

|Λ〉 , k = 1, . . . , N − 1− i0 , (104b)

altogether N states besides the vacuum [1]. The corresponding character formula
for the massless UIRs of this series is therefore:

ch L̂Λ = 1 +

i0∑

j=0

i0∏

i=j

e(α2,N+4−i) +

N−1−i0∑

k=1

N−1−i0∏

i=k

e(α4,4+i) ,

i0 = 0, 1, . . . , N − 2 , ri = δi,i0+1 . (105)

4 Discussion and outlook

First we recall the results on decompositions of long irreps as they descend to
the unitarity threshold. In the SRC cases in subsection (3.3) we have established
that for d = dmax there hold the two–term decompositions given in (77), (83), and
their conjugates. In the DRC cases in subsection (3.4) we have established that for
N > 1 and d = dmax = dac hold the four–term decompositions given in (92), (94),
(96), (98).

Next we note that for N = 1 all SRC cases enter some decomposition, while no
DRC cases enter any decomposition. For N > 1 the situation is more diverse and
so we give the list of UIRs that do not enter decompositions:
• SRC cases:
•a d = dmax = da = d1

N1 = 2 + 2j2 + z + 2m1 − 2m/N > d3
NN ,

j1, j2 arbitrary, r1 = 0.
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•b d = d2
N1 = z + 2m1 − 2m/N > d3

NN , j2 = 0,
j1 arbitrary, r1 ≤ 2.

•c d = dmax = dc = d3
NN = 2 + 2j1 − z + 2m/N > d1

N1,
j1, j2 arbitrary, rN−1 = 0.

•d d = d4
NN = −z + 2m/N > d1

N1, j1 = 0,
j2 arbitrary, rN−1 ≤ 2.

• DRC cases: all non-trivial cases for N = 1, while for N > 1 the list is:

•ac d = dmax = dac = d1
N1 = d3

NN = 2 + j1 + j2 +m1,
j1, j2 arbitrary, r1rN−1 = 0.

•ad d = d1
N1 = d4

NN = 1 + j2 +m1, j1 = 0,
j2 arbitrary, rN−1 ≤ 2, r1 = 0 for N > 2.

•bc d = d2
N1 = d3

NN = 1 + j1 +m1, j2 = 0,
j1 arbitrary, r1 ≤ 2, rN−1 = 0 for N > 2.

•bd d = d2
N1 = d4

NN = m1, j1 = j2 = 0,
r1, rN−1 ≤ 2 for N > 2, r1 ≤ 4 for N = 2.

We would like to point out possible application of our results to current devel-
opments in conformal field theory. Recently, there is interest in superfields with
conformal dimensions which are protected from renormalisation in the sense that
they cannot develop anomalous dimensions [14–16, 18, 26, 27]. Initially, the idea
was that this happens because the representations under which they transform de-
termine these dimensions uniquely. Later, it was argued that one can tell which
operators will be protected in the quantum theory simply by looking at the repre-
sentations they transform under and whether they can be written in terms of single
trace 1/2 BPS operators (chiral primaries or CPOs) on analytic superspace [18].
In [27] it was shown how, at the unitarity threshold, a long multiplet can be de-
composed into four semi–short multiplets, and decompositions similar to ours, i.e.,
involving the modules given in (90) and [1] (which follow from the odd embeddings
given in [7]), were considered for N = 2, 4. However, the decompositions of [27]
are justified on the dimensions of the finite–dimensional irreps of the Lorentz and
su(N) subalgebras involved in the superfields involved in the decompositions, and
in particular, the latter hold also when r1rN−1 = 0.

Independently of the above, we would like to make a mathematical remark. As a
by-product of our analysis we have obtained character formulae for the complex Lie
superalgebras sl(4/N). The point is that our character formulae have as starting
point character formulae of Verma modules and factor–modules over sl(4/N). Thus,
almost all character formulae in Section 3, more precisely, formulae (62), (68),
(71), (75), (80), (82), (88), (90), (91), (93), (97), (100), (101), (102), (103) and
their conjugates become character formulae for sl(4/N) for the same values of the
representation parameters by just discarding the counter-terms R, Rlong, resp.
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