Space groups for aperiodic crystals

Jean-Pierre Gazeau and Avi Elkharrat

Laboratoire de Physique Théorique de la Matière Condensée, Boîte 7020, Université Paris 7-Denis Diderot, 75251 Paris Cedex 05

Christiane Frougny

Laboratoire d'Informatique Algorithmique: Fondements et Applications,
UMR 7089 CNRS, Boîte 7014, Université Paris 7-Denis Diderot, 75251 Paris Cedex 05, and Université Paris 8

Jean-Louis Verger-Gaugry
Institut Fourier,
UMR 5582 CNRS, Université Grenoble I, BP 74, 38402 Saint-Martin d'Hères
We report on the existence of symmetry plane-groups for quasiperiodic point-sets named beta-lattices. Like lattices are vector superpositions of integers, beta-lattices are vector superpositions of beta-integers. When $\beta>1$ is a quadratic Pisot-Vijayaraghavan (PV) algebraic unit, the set of beta-integers can be equipped with an abelian group structure and an internal multiplicative law. When $\beta=(1+\sqrt{5}) / 2,1+\sqrt{2}$ and $2+\sqrt{3}$, we show that these arithmetic and algebraic structures lead to freely generated symmetry planegroups for beta-lattices. These plane-groups are based on repetitions of discrete adapted rotations and translations we shall refer to as "beta-rotations" and "beta-translations". Hence beta-lattices, endowed with beta-rotations and beta-translations, can be viewed like lattices. We also show that, at large distances, beta-lattices and their symmetries behave asymptotically like lattices and lattice symmetries respectively.

PACS: 02.20.-a,61.44.-n
Key words: beta-lattices, Pisot numbers, quasicrystals, tilings, plane groups

1 Introduction: Lattices versus beta-lattices

After the discovery of modulated phases and of quasicrystals, Crystallography has been divided in two categories: periodic Crystallography, and aperiodic Crystallography [1]. Let us recall here the essential of the former.

- A crystallographic group in \mathbb{R}^{d}, or a space-group in \mathbb{R}^{d}, is a discrete group of isometries whose maximal translation subgroup is of rank d, hence isomorphic to \mathbb{Z}^{d}.
- A periodic crystal is the orbit under the action of a crystallographic group of a finite number of points of \mathbb{R}^{d}.

As an example, let us just consider the familiar square lattice of Figure 1 mathematically described by

$$
\begin{equation*}
\Lambda=\mathbb{Z}+\mathbb{Z} \mathrm{e}^{\mathrm{i} \pi / 2} \tag{1}
\end{equation*}
$$

Fig. 1. Elementary square lattice.

This set presents a 4 -fold rotational symmetry. Its symmetry space-group G is the semi-direct product of the translation-group of Λ by its rotation-group,

$$
\begin{equation*}
G=\Lambda \rtimes\left\{1,-1, \mathrm{e}^{\mathrm{i} \pi / 2}, \mathrm{e}^{-\mathrm{i} \pi / 2}\right\} \tag{2}
\end{equation*}
$$

The internal law is given by:

$$
\begin{equation*}
(\lambda, R)\left(\lambda^{\prime}, R^{\prime}\right)=\left(\lambda+R \lambda^{\prime}, R R^{\prime}\right) \tag{3}
\end{equation*}
$$

with $\lambda, \lambda^{\prime} \in \Lambda$ and $R, R^{\prime} \in\left\{1,-1, \mathrm{e}^{\mathrm{i} \pi / 2}, \mathrm{e}^{-\mathrm{i} \pi / 2}\right\}$.
Aperiodicity of quasicrystals implies the absence of such space-group structure based on the integers. On the other hand, experimentally observed quasicrystals show self-similarity (e.g. in their diffraction pattern). Those observed self-similarity factors are the quadratic Pisot-Vijayaraghavan (PV) units:

$$
\begin{equation*}
\beta=\tau=\frac{1+\sqrt{5}}{2}, \quad \beta=\delta=1+\sqrt{2}, \quad \beta=\theta=2+\sqrt{3} \tag{4}
\end{equation*}
$$

Each such β determines a discrete set of the line, \mathbb{Z}_{β}, the set of "beta-integers", aimed to play the role of integers. The first tau-integers around the origin are displayed in Fig. 2.

Fig. 2. First elements of \mathbb{Z}_{τ} (tau-integers) around the origin and associated tiling.
Beta-lattices are precisely aimed to replace lattices in the context of quasicrystals. They are based on beta-integers, like lattices are based on integers:

$$
\begin{equation*}
\Gamma=\sum_{i=1}^{d} \mathbb{Z}_{\beta} \mathbf{e}_{i} \tag{5}
\end{equation*}
$$

with $\left(\mathbf{e}_{i}\right)$ a base of \mathbb{R}^{d}.
In Fig. 3 we show the tau-lattice $\Gamma_{1}(\tau)=\mathbb{Z}_{\tau}+\mathrm{e}^{\mathrm{i} \pi / 5} \mathbb{Z}_{\tau}$ in \mathbb{R}^{2}.

Fig. 3. τ-lattice $\Gamma_{1}(\tau)=\mathbb{Z}_{\tau}+\mathrm{e}^{\mathrm{i} \pi / 5} \mathbb{Z}_{\tau}$ in \mathbb{R}^{2}.
Beta-lattices are eligible frames in which one could think of the properties of quasiperiodic point-sets and tilings, thus generalizing the notion of lattice in periodic cases.

As a matter of fact, it has become like a paradigm that geometrical supports of quasi-crystalline structures should be Delaunay sets obtained through "Cut-and-Projection" from higher-dimensional lattices. We show in Fig. 4 a "Cut-andProject" 2D decagonal set and its embedding into the tau-lattice of Fig. 3 is shown in Fig. 5.

Therefore, within the context of aperiodic Crystallography it is natural to concede a place to what we can call beta-periodic Crystallography. Mimicking periodic Crystallography, we propose the following definitions.

- A beta-crystallographic group in \mathbb{R}^{d} is a discrete group of beta-isometries (to be defined!) whose maximal translation subgroup is isomorphic to $\left(\mathbb{Z}_{\beta}\right)^{d}$.
- A beta-lattice or beta-periodic crystal is the orbit under the action of a beta-crystallographic group of a finite number of points of \mathbb{R}^{d}.

Of course, one could ask whether the domain of application of those definitions is empty or not. The content of this article, mainly based on the recent publication [2], yields specific examples illustrating this new concept of beta-crystallographic group.

Fig. 4. A decagonal Cut-and-Project set

2 Beta-integers in place of integers

Let us define now in a precise way the beta-integers and give their fundamental arithmetic properties. More details and proofs are found in [3] and [4].

2.1 Counting with irrational basis

We first start with the notion of beta-expansions of real numbers $[5,6]$.

- Let $\beta>1$.
- For a real number $x \geq 0$ there exists $k \in \mathbb{Z}$ such that $\beta^{k} \leq x<\beta^{k+1}$. Let $x_{k}=\left\lfloor x / \beta^{k}\right\rfloor$ (integer part) and $r_{k}=\left\{x / \beta^{k}\right\}$ (fractional part).
- For $i<k$, put $x_{i}=\left\lfloor\beta r_{i+1}\right\rfloor$, and $r_{i}=\left\{\beta r_{i+1}\right\}$.
- The beta-expansion of a real number $x \geq 0$ then reads as:

$$
\begin{align*}
x & =x_{k} \beta^{k}+x_{k-1} \beta^{k-1}+\cdots+x_{1} \beta+x_{0}+\frac{x_{-1}}{\beta}+\frac{x_{-2}}{\beta^{2}} \cdots \equiv \\
& \equiv x_{k} x_{k-1} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \cdots \tag{6}
\end{align*}
$$

- The digits x_{i} obtained by this greedy algorithm are integers from the set $A=\{0, \ldots,\lceil\beta\rceil-1\}(\lceil\beta\rceil$: smallest integer larger than $\beta)$.

Fig. 5. Embedding of a Cut-and-Project set into the τ-lattice of Fig. 3.

Within this context, the set \mathbb{Z}_{β} of beta-integers is made up of all real numbers whose beta-expansions are polynomial,

$$
\begin{align*}
\mathbb{Z}_{\beta} & =\left\{x \in \mathbb{R}| | x \mid=x_{k} \cdots x_{0}\right\}= \\
& =\mathbb{Z}_{\beta}^{+} \cup\left(-\mathbb{Z}_{\beta}^{+}\right) \tag{7}
\end{align*}
$$

Set \mathbb{Z}_{β} is self-similar and symmetrical with respect to the origin:

$$
\begin{equation*}
\beta \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}, \quad \mathbb{Z}_{\beta}=-\mathbb{Z}_{\beta} \tag{8}
\end{equation*}
$$

If β is a PV number then \mathbb{Z}_{β} is a Meyer set [3]. This means that there exists a finite set F such that $\mathbb{Z}_{\beta}+\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+F$. This set F has to be characterized in order to see to what extent beta-integers differ from ordinary integers with respect to additive and multiplicative structures. This problem is solved for all quadratic Pisot-Vijayaraghavan (PV) units and for a few higher-degree cases [3].

The quadratic PV units fall into the two following classes:

- Case 1: β is solution of $X^{2}=a X+1, a \geq 1$.
* Define the 2-letter substitution σ_{β} by

$$
\sigma_{\beta}:\left\{\begin{array}{l}
L \mapsto L^{a} S \\
S \mapsto L
\end{array}\right.
$$

* The fixed point of the substitution, denoted by $\sigma_{\beta}^{\infty}(L)$, is associated with a tiling of the positive real line, made with two tiles L and S, with respective lengths $\ell(L)=1, \ell(S)=\beta-a=1 / \beta$.
* The nodes of this tiling are the positive beta-integers.
- Case 2: β is solution of $X^{2}=a X-1, a \geq 3$.
* Define the substitution σ_{β} by

$$
\sigma_{\beta}:\left\{\begin{array}{l}
L \mapsto L^{a-1} S \\
S \mapsto L^{a-2} S
\end{array}\right.
$$

* The fixed point of the substitution is denoted by $\sigma_{\beta}^{\infty}(L)$ and is the tiling of the positive real line, made with two tiles L and S with respective lengths $\ell(L)=1, \ell(S)=\beta-(a-1)=1-1 / \beta$.
* The nodes of this tiling are the positive beta-integers.

The additive and multiplicative properties of beta-integers with β a PV are then given by:

- In Case 1 we have

$$
\begin{align*}
& \mathbb{Z}_{\beta}+\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+\left\{0, \pm\left(1-\frac{1}{\beta}\right)\right\} \subset \mathbb{Z}_{\beta} / \beta^{2} \tag{9}\\
& \mathbb{Z}_{\beta} \times \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+\left\{0, \pm \frac{1}{\beta}, \ldots, \pm \frac{a}{\beta}\right\} \subset \mathbb{Z}_{\beta} / \beta^{2} \tag{10}
\end{align*}
$$

For instance, for $\beta=\tau, 1+1=2=\tau+(1-1 / \tau)$, and $\left(\tau^{2}+1\right)\left(\tau^{2}+1\right)=$ $\tau^{5}+\tau^{2}-1 / \tau$.

- In Case 2 we have

$$
\begin{align*}
& \mathbb{Z}_{\beta}+\mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+\left\{0, \pm \frac{1}{\beta}\right\} \equiv \widetilde{\mathbb{Z}}_{\beta} \tag{11}\\
& \mathbb{Z}_{\beta}^{+}+\mathbb{Z}_{\beta}^{+} \subset \mathbb{Z}_{\beta}^{+} / \beta \tag{12}\\
& \mathbb{Z}_{\beta} \times \mathbb{Z}_{\beta} \subset \mathbb{Z}_{\beta}+\left\{0, \pm \frac{1}{\beta}, \ldots, \pm \frac{a-1}{\beta}\right\} \subset \mathbb{Z}_{\beta} / \beta \tag{13}
\end{align*}
$$

($\widetilde{\mathbb{Z}}_{\beta}$: set of "decorated" beta-integers)
For instance, for $\beta=\theta, 2+2=\theta+1 / \theta=2 \times 2$.

2.2 Beta-integers as an additive group [3, 4]

Let b_{m} and b_{n} be the $m^{\text {th }}$ and $n^{\text {th }}$ beta-integers. Beta-addition is the internal additive law on the set of beta-integers

$$
\begin{equation*}
b_{m} \oplus b_{n}=b_{m+n} \tag{14}
\end{equation*}
$$

We then list some remarkable consequences of this definition.
$-\mathbb{Z}_{\beta}$ is an abelian group for \oplus.

- Beta-addition is compatible with addition if β is a quadratic PV unit: for all $(m, n) \in \mathbb{Z}^{2}, b_{m}+b_{n} \in \mathbb{Z}_{\beta}$ implies $b_{m}+b_{n}=b_{m} \oplus b_{n}$.
- beta-addition has the following minimal distortion property with respect to addition: for all $\left(b_{m}, b_{n}\right) \in \mathbb{Z}_{\beta}^{2}$ with β a quadratic PV unit,

$$
b_{m}+b_{n}-\left(b_{m} \oplus b_{n}\right) \in \begin{cases}\left\{0, \pm\left(1-\frac{1}{\beta}\right)\right\} & \text { in Case 1 } \tag{15}\\ \left\{0, \pm \frac{1}{\beta}\right\} & \text { in Case } 2\end{cases}
$$

- For instance, if $\beta=\tau$, then $1 \oplus 1=\tau$ and $2-\tau=1-\tau^{-1}$, and if $\beta=\theta$, then $2 \oplus 2=\theta$ and $4-\theta=\theta^{-1}$.

2.3 Quasi-multiplication on beta-integers [4]

We could try to play the same game with multiplication by defining

$$
\begin{equation*}
b_{m} " \times " b_{n} \stackrel{\text { def }}{=} b_{m n}, \tag{16}
\end{equation*}
$$

for all $\left(b_{m}, b_{n}\right) \in \mathbb{Z}_{\beta}^{2}$.
Actually we follow the wrong way in choosing (16) because it is not compatible with multiplication in \mathbb{R}. For instance, for $\beta=\tau, b_{2} \times b_{2}=\tau \times \tau=\tau^{2}=b_{3} \neq b_{4}$.

So we define the quasi-multiplication

$$
b_{m} \otimes b_{n}= \begin{cases}b_{\left(m n-a \rho_{S}(m) \rho_{S}(n)\right)} & \text { in Case 1, } \\ b_{\left(m n-\rho_{S}(m) \rho_{S}(n)\right)} & \text { in Case 2, },\end{cases}
$$

where, for $n \geq 0, \rho_{S}(n)$ denotes the number of tiles S between $b_{0}=0$ and b_{n}.

$$
\begin{array}{ll}
\rho_{S}(n)=\frac{1}{1-1 / \beta}\left(n-b_{n}\right), & \text { Case } 1, \\
\rho_{S}(n)=\beta\left(n-b_{n}\right), & \\
\text { Case } 2
\end{array}
$$

for $n<0, \rho_{S}(n)=-\rho_{S}(-n)$.
Let us list the properties of this quasi-multiplication

- Quasi-multiplication is compatible with multiplication of real numbers if β is a quadratic PV unit.
- Quasi-multiplication has minimal distortion property with respect to multiplication: for all $\left(b_{m}, b_{n}\right) \in \mathbb{Z}_{\beta}^{2}$ with β quadratic PV unit,

$$
b_{m} b_{n}-\left(b_{m} \otimes b_{n}\right) \in \begin{cases}\left\{(0, \pm 1, \ldots, \pm a)\left(1-\frac{1}{\beta}\right)\right\}, & \text { Case 1 } \\ \left\{(0,1, \ldots, a-1) \frac{\operatorname{sgn}\left(b_{m} b_{n}\right)}{\beta}\right\}, & \text { Case } 2 .\end{cases}
$$

3 Beta-lattices in the plane

It is well known that the condition $2 \cos (2 \pi / N) \in \mathbb{Z}$, i.e. $N=1,2,3,4$ and 6 , characterizes N-fold Bravais lattices in \mathbb{R}^{2} (and in \mathbb{R}^{3}). Now, what can we do when N is quasicrystallographic i.e. $N=5,10,8$ and 12 , respectively associated with one of the cyclotomic Pisot units $\tau=2 \cos (2 \pi / 10), \delta=1+2 \cos (2 \pi / 8)$ and $\theta=2+2 \cos (2 \pi / 12)$? Possible answers are provided by beta-lattices in the plane. We recall that they are point sets of the form

$$
\begin{equation*}
\Gamma_{q}(\beta)=\mathbb{Z}_{\beta}+\mathbb{Z}_{\beta} \zeta^{q} \tag{17}
\end{equation*}
$$

with $\zeta=\mathrm{e}^{\mathrm{i} 2 \pi / N}$, for $1 \leq q \leq N-1$. Examples of beta-lattices for $\beta=\tau, \delta$, and θ are shown in Figs. 6, 7, and 8. Note the following important features.

- They are lattices for the law $\oplus: \Gamma_{q}(\beta) \oplus \Gamma_{q}(\beta)=\Gamma_{q}(\beta)$.
- They are self-similar: $\beta \Gamma_{q}(\beta) \subset \Gamma_{q}(\beta)$.
- They satisfy a more general "quasi" self-similarity: $\mathbb{Z}_{\beta} \otimes \Gamma \subset \Gamma$.
- However, they are not rotationally invariant.
- A large class of interesting aperiodic sets can be embedded in these betalattices $\Gamma_{q}(\beta)$ or in some "decorated" version of them.

Fig. 6. Tau-lattice in the plane: $\Gamma_{1}(\tau)=\mathbb{Z}_{\tau}+\mathbb{Z}_{\tau} \zeta, \zeta=\mathrm{e}^{\mathrm{i} \pi / 5}$. The particular point $z_{2,3}=b_{2}+b_{3} \zeta \equiv(2,3)$ is indicated in the figure

Fig. 7. The δ-lattice $\Gamma_{1}(\delta)$ with points, and its trivial tiling obtained by joining points along the horizontal axis, and along the direction defined by ζ.

Fig. 8. The decorated θ-lattice $\widetilde{\Gamma}_{1}(\theta)$ with points, and its trivial tiling obtained by joining points along the horizontal axis, and along the direction defined by ζ.

4 Rotational and translational properties of the beta-lattices $\Gamma_{1}(\beta)$

4.1 Rotational properties

Beta-lattices are not rotationally invariant. The action of rotations on $\Gamma_{1}(\beta)$ (the rotational properties of $\Gamma_{q}(\beta)$ can always be reexpressed in terms of the rotational properties of $\left.\Gamma_{1}(\beta)\right)$.

- When $\beta=\tau=\zeta+\bar{\zeta}, \zeta=\mathrm{e}^{2 \pi \mathrm{i} / 10}$,

$$
\begin{aligned}
\zeta^{q} \Gamma_{1}(\tau) & \subset \Gamma_{1}(\tau)+\left(\left\{0, \pm\left(1-\frac{1}{\tau}\right)\right\}+\left\{0, \pm\left(1-\frac{1}{\tau}\right)\right\} \zeta\right) \subset \\
& \subset \frac{\Gamma_{1}(\tau)}{\tau^{2}}
\end{aligned}
$$

- When $\beta=\delta=\zeta+\bar{\zeta}+1, \zeta=\mathrm{e}^{2 \pi \mathrm{i} / 8}$,

$$
\begin{aligned}
\zeta^{q} \Gamma_{1}(\delta) \subset & \Gamma_{1}(\delta)+\left(\left\{0, \pm\left(1-\frac{1}{\delta}\right), \pm 2\left(1-\frac{1}{\delta}\right)\right\}+\right. \\
& \left.+\left\{0, \pm\left(1-\frac{1}{\delta}\right), \pm 2\left(1-\frac{1}{\delta}\right)\right\} \zeta\right) \subset \frac{\Gamma_{1}(\delta)}{\delta^{3}}
\end{aligned}
$$

- When $\beta=\theta=\zeta+\bar{\zeta}+2, \zeta=\mathrm{e}^{2 \pi \mathrm{i} / 12}$,

$$
\begin{aligned}
\zeta^{q} \Gamma_{1}(\theta) & \subset \Gamma_{1}(\theta)+\left(\left\{0, \pm \frac{1}{\theta}, \pm \frac{2}{\theta}\right\}+\left\{0, \pm \frac{1}{\theta}, \pm \frac{2}{\theta}\right\} \zeta\right) \subset \\
& \subset \widetilde{\widetilde{\Gamma}}_{1}(\theta) \equiv \widetilde{\widetilde{Z}}_{\theta}+\widetilde{\mathbb{Z}}_{\theta} \zeta
\end{aligned}
$$

where $\widetilde{\widetilde{Z}}_{\theta}=\mathbb{Z}_{\theta}+\{0, \pm 1 / \theta, \pm 2 / \theta\}$.

4.2 Translational properties

- In Case 1:

$$
\Gamma_{q}(\beta)+\Gamma_{q}(\beta) \subset \Gamma_{q}(\beta) / \beta^{2}
$$

- In Case 2:

$$
\Gamma_{q}(\beta)+\Gamma_{q}(\beta) \subset \widetilde{\Gamma}_{q}(\beta)
$$

5 A plane-group for beta-lattices

5.1 A point group first

Since beta-lattices of the type $\Gamma_{q}(\beta)$ are not rotationally either translationally invariant, we shall enforce invariance by replacing the usual additive and multiplicative laws by the beta-addition and the quasi-multiplication. Note that since the quasi-multiplication is not distributive with respect to beta-addition, we find several candidates for internal rotational operators on $\Gamma_{1}(\beta)$. The choice for the beta-rotations presented here is driven by compatibility property. Other internal rotational operator are not compatible with Euclidean rotations!

Before stating the main result concerning the existence of a symmetry point group, let us describe in detail those necessary "modified" rotations.

- When $\beta=\tau$, the following 10 operators $r_{q}, q=0,1, \ldots, 9$, leave $\Gamma_{1}(\tau)$ invariant:

$$
\begin{equation*}
r_{q} \odot\left(b_{m}+b_{n} \zeta\right)=\eta_{q} b_{m} \ominus \nu_{q} b_{n}+\left(\nu_{q} b_{m} \oplus\left(\eta_{q}+\tau \nu_{q}\right) b_{n}\right) \zeta . \tag{18}
\end{equation*}
$$

where

$$
\begin{array}{ccccccc}
q & = & 0 & 1 & 2 & 3 & 4 \\
\left(\eta_{q}, \nu_{q}\right) & =(1,0) & (0,1) & (-1, \tau) & (-\tau, \tau) & (-\tau, 1) \\
\eta_{q}+\nu_{q} \tau & = & 1 & \tau & \tau & 1 & 0
\end{array}
$$

together with $\left(\eta_{q+5}, \nu_{q+5}\right)=\left(-\eta_{q},-\nu_{q}\right)$.

- When $\beta=\delta$, the following operators leave $\Gamma_{1}(\delta)$ invariant:

$$
\begin{aligned}
& r_{1} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{n}+b_{m+2 n-2 \rho_{S}(n)} \zeta \\
& r_{2} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{m+2 n-2 \rho_{S}(n)}+b_{2 m+n-2 \rho_{S}(m)} \zeta, \\
& r_{3} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{2 m+n-2 \rho_{S}(m)}+b_{m} \zeta .
\end{aligned}
$$

- When $\beta=\theta$, the following operators leave $\Gamma_{1}(\theta)$ invariant:

$$
\begin{aligned}
& r_{1} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{n}+b_{m+2 n-\rho_{S}(n)} \zeta, \\
& r_{2} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{m+2 n-\rho_{S}(n)}+b_{2 m+2 n-\rho_{S}(m)} \zeta, \\
& r_{3} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{2 m+2 n-\rho_{S}(m)}+b_{2 m+2 n-\rho_{S}(n)} \zeta, \\
& r_{4} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{2 m+2 n-\rho_{S}(m)}+b_{2 m+n-\rho_{S}(n)} \zeta, \\
& r_{5} \odot\left(b_{m}+b_{n} \zeta\right)=-b_{n+2 m-\rho_{S}(m)}+b_{m} \zeta .
\end{aligned}
$$

For $\beta=\tau, \delta$ or θ, let the composition rule of these operators on $\Gamma_{1}(\beta)$ be defined by $\left(r r^{\prime}\right) \odot z=r \odot\left(r^{\prime} \odot z\right)$, and denote by Id the identity and by ι the space inversion $\iota \odot z=-z$. Then:

- the composition rule $\left(r, r^{\prime}\right) \rightarrow r r^{\prime}$ is associative and the following identities hold: $r_{0}=\mathrm{Id}$ and $r_{q+N / 2}=\iota r_{q}=r_{q} \iota$ for $q=0,1, \ldots, N / 2-1$, where N is the symmetry order of β,
- those beta-rotations are compatible with rotations when β assumes one of the specified values τ, δ and θ,
- for $\beta=\tau, \delta$ and θ and for $N=10,8$ and 12 respectively, let $\Re_{N}=\Re_{N}(\beta)$ denote the semi-group freely generated by all $r_{q}, q \in\{0,1, \ldots, N-1\}$. Among all beta-rotations, only $r_{0}, r_{1}, r_{N / 2-1}, r_{N / 2+1}, r_{N-1}, \iota$ have their inverse in \Re_{N}.

All these results lead to the following statement concerning the existence of point group for the considered beta-lattices.

Theorem 1 [2] For $\beta=\tau$, δ and θ, the group $\mathcal{R}_{N}=\mathcal{R}_{N}(\beta)$, freely generated by the four element set

$$
\left\{r_{0}, \iota, r_{1}, r_{N / 2-1}\right\}
$$

is a symmetry group for the beta-lattice $\Gamma_{1}(\beta)$. It is called the symmetry pointgroup of $\Gamma_{1}(\beta)$.

5.2 Eventually a plane group for beta-lattices $\Gamma_{1}(\beta)$

Combining translational properties of beta-lattices with the beta-rotations described in the previous subsection allow us to enunciate our central result.

Theorem 2 [2] For $\beta=\tau, \delta$ and θ, and for $N=10,8$ and 12 respectively, the group $\mathcal{S}_{N}=\mathcal{S}_{N}(\beta)$ freely generated by the five-element set $\left\{r_{0}, \iota, r_{1}, r_{N / 2-1}, t_{1}\right\}$, with $t_{1}(z)=1 \oplus z$, is a symmetry group for the beta-lattice $\Gamma_{1}(\beta)$. This group is the semi-direct product of $\Gamma_{1}(\beta)$ and \mathcal{R}_{N}

$$
\mathcal{S}_{n}=\Gamma_{1}(\beta) \rtimes \mathcal{R}_{N}
$$

with the composition rule

$$
(b, R)\left(b^{\prime}, R^{\prime}\right)=\left(b \oplus\left(R \odot b^{\prime}\right), R R^{\prime}\right)
$$

In the present context, \mathcal{S}_{N} is called the symmetry plane-group of $\Gamma_{1}(\beta)$.
The action of an element of \mathcal{S}_{N} on $\Gamma_{1}(\beta)$ is thus defined as

$$
(b, R) \cdot z=b \oplus(R \odot z)=t_{b}(R \odot z) \in \Gamma_{1}(\beta)
$$

5.3 Tile transformations using internal operations on $\Gamma_{1}(\tau)$

In order to illustrate the beta-rotations, we consider again a tiling associated to the simplest beta-lattice, namely $\Gamma_{1}(\tau)$. This tiling is shown in Fig. 9. We display in Fig. 10 the (deforming) action of the "beta-rotation" r_{1} on the four different types of tiles appearing in Fig. 9.

6 Asymptotic properties

Let us end this article with some considerations on the behavior of beta-lattices at large distances.

Let β be a quadratic PV unit number. Then the following asymptotic behaviour of beta-integers holds true

$$
\begin{gathered}
b_{n} \underset{|n| \rightarrow \infty}{\approx} \gamma n \\
b_{m} \otimes b_{n} \underset{|m|,|n| \rightarrow \infty}{\approx} \gamma^{2} m n
\end{gathered}
$$

where

$$
\gamma= \begin{cases}1-\frac{1}{a}\left(1-\frac{1}{\beta}\right)^{2}=\frac{(a+2) \beta-a^{2}-a-2}{a} & (\text { Case } 1) \\ 1-\frac{1}{\beta^{2}}=a(\beta-a)+2 & (\text { Case } 2)\end{cases}
$$

Hence, the multiplication \otimes is asymptotically associative and distributive with respect to the addition \oplus. In this sense we can say that \mathbb{Z}_{β} is asymptotically a

Fig. 9. The trivial tiling associated to $\Gamma_{1}(\tau)$ and its four tiles. From left to right: $L L$, $L S, S L, S S$.
ring:

$$
\begin{aligned}
& b_{m} \otimes\left(b_{n} \oplus b_{p}\right)-\left(b_{m} \otimes b_{n}\right) \oplus\left(b_{m} \otimes b_{p}\right) \approx 0 \\
& b_{m} \otimes\left(b_{n} \otimes b_{p}\right)-\left(b_{m} \otimes b_{n}\right) \otimes b_{p} \approx 0
\end{aligned}
$$

for $|m|,|n|,|p|,|m \pm n|,|m \pm p| \rightarrow \infty$.
Consequently we compute the asymptotic behavior of rotational internal laws of beta-lattices, as defined in the studied cases.

- When $\beta=\tau$, we have for invertible operators

$$
\begin{aligned}
& r_{1} \odot\left(b_{m}+b_{n} \zeta\right) \underset{|m|,|n| \rightarrow \infty}{\approx} \gamma(-n+(m+\tau n) \zeta), \\
& r_{4} \odot\left(b_{m}+b_{n} \zeta\right) \underset{|m|,|n| \rightarrow \infty}{\approx} \gamma(-\tau m-n-m \zeta)
\end{aligned}
$$

Fig. 10. Rotation operator r_{1} applied to elementary tiles of $\Gamma_{1}(\tau)$: tiles are deformed in order for the vertices to remain in $\Gamma_{1}(\tau)$. Arrows indicate the vertices of the new tile in which are mapped the vertices of the original tile.

- When $\beta=\delta$, we have for invertible operators

$$
\begin{aligned}
& r_{1} \odot\left(b_{m}+b_{n} \zeta\right) \underset{|m|,|n| \rightarrow \infty}{\approx} \gamma(-n+(m+(\delta-1) n) \zeta), \\
& r_{3} \odot\left(b_{m}+b_{n} \zeta\right){ }_{|m|,|\tilde{n}| \rightarrow \infty} \gamma(-(\delta-1) m-n+m \zeta) .
\end{aligned}
$$

- When $\beta=\theta$, we have for invertible operators

$$
\begin{aligned}
& r_{1} \odot\left(b_{m}+b_{n} \zeta\right) \underset{|m|,|n| \rightarrow \infty}{\approx} \gamma(-n+(m+(\theta-2) n) \zeta), \\
& r_{5} \odot\left(b_{m}+b_{n} \zeta\right){ }_{|m|,|\tilde{n}| \rightarrow \infty}^{\approx} \gamma(-(\theta-2) m-n+m \zeta) .
\end{aligned}
$$

At this point one should be aware that these asymptotic beta-rotations are equivalent to rotations for large $|m|$ and $|n|$, and an easy computation shows that for

```
\(z_{m, n} \in \Gamma_{1}(\beta)\)
```

$$
\begin{array}{r}
\zeta z_{m, n}-r_{1} \odot z_{m, n} \underset{|m|,|n| \rightarrow \infty}{\approx} 0 \\
\zeta^{N / 2-1} z_{m, n}-r_{N / 2-1} \odot z_{m, n} \underset{|m|,|n| \rightarrow \infty}{\approx} 0,
\end{array}
$$

with $N=10,8$ and 12 .

References

[1] International Union of Crystallography: Acta Cryst. A 48 (1992) 922.
[2] A. Elkharrat, Ch. Frougny, J.P. Gazeau and J.L. Verger-Gaugry: Theor. Comp. Sci. 319 (2004) 281.
[3] C. Burdík, Ch. Frougny, J.P. Gazeau and R. Krejcar: J. of Physics A: Math. Gen. 31 (1998) 6449.
[4] Ch. Frougny, J.P. Gazeau and R. Krejcar: Theor. Comp. Sci. 303 (2003) 491.
[5] A. Rényi: Acta Math. Acad. Sci. Hungar. 8 (1957) 477.
[6] W. Parry: Acta Math. Acad. Sci. Hungar. 11 (1960) 401.

