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1 Introduction

Symmetry groups belong to the main tools in theoretical physics. Among them,
special role belongs to Lie groups or groups of continuous symmetries due to the
importance of Noether’s theorem allowing to relate symmetries and conserved quan-
tities in field theories. Instead of Lie group action it is usually sufficient to consider
infinitesimal symmetry transformations induced by the corresponding Lie algebra.

In the last decade important results were obtained in the classification of grad-
ings of classical simple Lie algebras. For a given simple Lie algebra it is thus possible
— with some effort — to determine all its gradings. Especially the fine gradings
are useful because other gradings are obtained from them by suitable combinations
of theirs grading subspaces. On the mathematical side, fine gradings of simple Lie
algebras are analogous of Cartan’s root decomposition. They define new bases with
unexpected properties. On the physical side, they yield quantum observables with
additive quantum numbers.

Relations between Lie algebras of the same dimension can be studied by means
of contractions or deformations. Special place belongs to graded contractions —
contractions which preserve a given grading and in this way yield further Lie alge-
bras with the same additive quantum numbers.

Since the classification of complex and real Lie algebras of low dimensions 3, 4
and 5 is known, the obtained graded contractions in these dimensions are classified.
This is the case e. g. for graded contractions of A1 = sl(2, C) and its real forms in
[17].

However a single step to A2 = sl(3, C) leads us to an unexplored territory of
8–dimensional complex Lie algebras. Besides the root decomposition, A2 has 3 fine
gradings, and the full graph of its gradings consists of 17 gradings including the 4
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fine gradings and the trivial grading — the whole A2. In order to obtain all graded
contractions of A2, it is sufficient to consider only the fine gradings, since among
them all contractions are found which would come from the coarse gradings.

Graded contractions for the root decomposition were obtained in the papers
[2],[1]. The investigations resulted there in 32 Lie algebras, of which 9 are 8–
dimensional non-decomposable. The present study is devoted to graded contrac-
tions of A2 for so-called Pauli grading. It seems that the results are most numerous
among all four fine gradings.

2 Gradings and graded contractions of Lie algebras

2.1 Lie gradings

Let us consider a finite–dimensional Lie algebra L over the field of complex num-
bers C. A decomposition of this algebra into a direct sum of its subspaces Li, i ∈ I

L =
⊕

i∈I

Li (1)

is called a grading of Lie algebra L, when the following property holds

(∀i, j ∈ I)(∃k ∈ I)([Li,Lj ] ⊆ Lk) , (2)

where I is an index set, and we denoted [Li,Lj ] :=
{
[x, y]

∣∣x ∈ Li, y ∈ Lj

}
. Sub-

spaces Li, i ∈ I are called grading subspaces. Grading Γ : L =
⊕

i∈I Li is a

refinement of grading Γ̃ : L =
⊕

j∈J L̃j if for each i ∈ I there exists j ∈ J such

that Li ⊆ L̃j . Refinement is called proper if the cardinality of I is greater than the
cardinality of the set J . Grading which cannot be properly refined is called fine. If
all grading subspaces are one–dimensional, then the grading is called finest. The
property (2) defines a binary operation on the set I . If [Li,Lj ] = {0} holds, we can
choose an arbitrary k. It is proved in [15] that for simple Lie algebras the index
set I with this operation can always be embedded into an Abelian group G; we are
going to denote the operation additively and we have

[Li,Lj ] ⊆ Li+j , where i, j, i + j ∈ G . (3)

Then we say that the Lie algebra is graded by the group G, or it is G−graded.
Group G is called a grading group.

Gradings of a Lie algebra L are closely related to the group of automorphisms
AutL. Automorphisms induce equivalence of gradings: if Γ : L =

⊕
i∈I Li is a

grading of L, then for an arbitrary automorphism g ∈ AutL Γ̃ : L =
⊕

i∈I g(Li)

is also a grading of L. Such gradings Γ and Γ̃ are called equivalent. The max-
imal set of diagonable and mutually commuting automorphisms is a subgroup of
AutL called a MAD−group (maximal Abelian group of diagonable automor-
phisms). Each given grading (2) determines a subgroup Diag Γ ⊂ AutL containing
all automorphisms g ∈ GL(L), which preserve Γ, g(Li) = Li, and are diagonal,

gx = λix for all x ∈ Li, i ∈ I ,
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where λi 6= 0 depends only on g and i ∈ I . In [15] an important theorem was
proved which, for all simple Lie algebras, is the basis for classification of all their
possible fine gradings.

Theorem 2.1. Let L be a finite–dimensional simple Lie algebra over an alge-
braically closed field of characteristic zero. Then the grading Γ is fine if and only
if Diag Γ is equal to some MAD–group.

In this way, the problem of classification of all fine gradings of simple Lie algebras
is converted into the classification of all MAD–groups in AutL. This task was
studied in papers [7], [8] and [5].

2.2 The Pauli gradings of sl(n, C)

Let us first consider Lie algebras sl(n, C) in general. We introduce the following
notation: subgroup in GL(n, C) containing all regular diagonal matrices is denoted
D(n). We also define n × n matrices

Qn = diag (1, ωn, ω2
n, . . . , ωn−1

n ) , (4)

where ωn = exp(2πi/n), and matrix

Pn =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .

0 0 0 · · · 0 1
1 0 0 · · · 0 0




. (5)

For n = 1 we set Q1 = P1 = (1). The grading Γn of sl(n, C) defined as

Γn : sl(n, C) =
⊕

(r,s)∈Zn×Zn\(0,0)

Lrs , (6)

where Lrs := {Xrs}lin and

Xrs = Qn
rPn

s (7)

is called the Pauli grading. It is, in fact, finest, i.e. all n2 − 1 = dim sl(n, C)
subspaces are one–dimensional. We can easily check that (6) is indeed a grading
by verification of the property (3):

[Xrs, Xr′s′ ] = (ωsr′

n − ωrs′

n )Xr+r′,s+s′ . (8)

Hence we see that our grading group G is equal to the additive Abelian group
Zn × Zn with addition componentwise (modulo n).
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Since this article focuses on the Pauli grading of sl(3, C) we list its explicit
formula arising from (6), (7):

Γ3 : sl(3, C) = L01 ⊕L02 ⊕L10 ⊕L20 ⊕L11 ⊕L22 ⊕L12 ⊕L21 = (9)

= Q3 ⊕ Q2
3 ⊕ P3 ⊕ P 2

3 ⊕ P3Q3 ⊕ P 2
3 Q2

3 ⊕ P3Q
2
3 ⊕ P 2

3 Q3 =

=




1 0 0
0 ω 0
0 0 ω2


 ⊕




1 0 0
0 ω2 0
0 0 ω


 ⊕




0 1 0
0 0 1
1 0 0


 ⊕




0 0 1
1 0 0
0 1 0


⊕

⊕




0 ω 0
0 0 ω2

1 0 0


 ⊕




0 0 ω
1 0 0
0 ω2 0


 ⊕




0 ω2 0
0 0 ω
1 0 0


 ⊕




0 0 ω2

1 0 0
0 ω 0


 ,

where ω = exp(2πi/3). Note that the symbol for linear span was omitted.

2.3 Graded contractions of Lie algebras

Let us state the definition of a graded contraction. Suppose L is a Lie algebra
graded by a group G, i.e. the relations (1) and (3) hold. Introducing contraction
parameters εij we define a bilinear mapping [ , ]ε on L (more precisely on the
underlying vector space V ) by the formula

[x, y]ε := εij [x, y] for all x ∈ Li, y ∈ Lj , i, j ∈ I and εij ∈ C . (10)

Since we claim the bilinearity of [ , ]ε, the condition (10) determines this mapping
on the whole V . Note that if the subspaces Li, Lj commute, [Li,Lj ] = {0}, then
[Li,Lj ]ε = {0} as well, independently of εij ; we call such positions irrelevant and
set these εij equal to zeros. If Lε := (V, [ , ]ε) is a Lie algebra, then it is called
a graded contraction of the Lie algebra L. The graded contraction preserves a
grading because it is also true that Lε =

⊕
i∈G Li is a grading of Lε. There are

two conditions which the parameters εij must fulfill for Lε to become a Lie algebra:
antisymmetry of [ , ]ε immediately gives

εij = εji , (11)

hence each such solution can be written as a symmetric matrix ε = (εij) which is
called a contraction matrix. The validity of the Jacobi identity is the second
condition and it is equivalent to the following property: for all (unordered) triples
i, j, k ∈ I

e(i j k) : [x, [y, z]ε]ε + [z, [x, y]ε]ε + [y, [z, x]ε]ε = 0 (∀x ∈ Li)(∀y ∈ Lj)(∀z ∈ Lk)
(12)

is satisfied. Each e(i j k), i, j, k ∈ I is then called a contraction equation. We
call the set of contraction equations a contraction system S, and the set of its
solutions is denoted R(S).

Let us introduce normalization process for contraction matrices. At first we
introduce a commutative elementwise matrix multiplication •, i.e. for two
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matrices A = (Aij), B = (Bij) we define a matrix C := (Cij) by the formula

Cij := AijBij (no summation) (13)

and write C = A •B. For the given grading (1) we also define a matrix α := (αij),
where

αij =
aiaj

ai+j

for i, j ∈ I (14)

and ai ∈ C \ {0} for all i ∈ I . The matrix α is then called a normalization
matrix. Normalization is a process based on the following lemma:

Lemma 2.2. Let Lε be a graded contraction of a graded Lie algebra L =
⊕

i∈I Li.

Then Leε, where ε̃ := α • ε, is for any normalization matrix α a graded contraction
of L and the Lie algebras Leε and Lε are isomorphic, Leε ' Lε.

Proof. We define a diagonal regular linear mapping h ∈ GL(L) corresponding to a

normalization matrix α =

(
aiaj

ai+j

)
by the formula

hxi = aixi i ∈ I, xi ∈ Li . (15)

Then for all x ∈ Li, y ∈ Lj the bilinear mapping [x, y]eε = ε̃ij [x, y] and the Lie
bracket [x, y]ε = εij [x, y] satisfy

[x, y]eε = ε̃ij [x, y] =
aiaj

ai+j

εij [x, y] = h−1[hx, hy]ε .

Hence Leε is a Lie algebra and h is an isomorphism between Leε and Lε.

3 Symmetries and graded contractions

3.1 Symmetry group of a grading

We define a symmetry group Aut Γ of a grading Γ : L =
⊕

i∈I Li as a subgroup
of AutL which contains automorphisms g with the property gLi = Lπg(i), where
πg : I → I is a permutation of the index set I . Thus, a permutation representation
∆Γ of the group Aut Γ is given on the set I , defined as ∆Γ(g) := πg . The kernel of
this representation is a stabilizer of Γ in Aut Γ,

Stab Γ = ker∆Γ = {g ∈ AutL | gLi = Li ∀i ∈ I} . (16)

Hence the stabilizer is a normal subgroup of Aut Γ and we have

Aut Γ/StabΓ ' ∆Γ Aut Γ . (17)

This permutation group ∆Γ Aut Γ is crucial for solving the system S. It can be
determined using relation (17). For fine gradings corresponding to the MAD-group
G we have Stab Γ = G. We define a normalizer of a MAD–group G as a subgroup

N (G) =
{
h ∈ AutL | h−1Gh ⊂ G

}
. (18)

As shown in [6], we have
N (G)/G ' ∆Γ Aut Γ . (19)
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3.2 Action of a symmetry group

Let us define a set of relevant unordered pairs of grading indices I by

I :=
{
i j

∣∣ i, j ∈ I, [Li,Lj ] 6= {0}
}

, (20)

where i, j denotes an unordered pair. For the Pauli grading of sl(n, C) this set will
be denoted by In. Analyzing relations (8), we obtain explicitly

In =
{

(ij)(kl)
∣∣ jk − il 6= 0 (mod n), (ij), (kl) ∈ Zn ×Zn \ {(0, 0)}

}
. (21)

A set of relevant contraction parameters εij , due to (11), can be written as
E := {εk, k ∈ I}. For a permutation π ∈ ∆Γ Aut Γ and a contraction matrix
ε = (εij), an action of π on a contraction matrix ε 7→ επ is defined by

(επ)ij := επ(i)π(j) . (22)

We observe that an action on variables εij 7→ επ(i)π(j) is in fact the action on
the set of relevant variables E : if εij ∈ E , [Li,Lj ] 6= {0} and g ∈ Aut Γ, ∆Γ(g) = π,
then {0} 6= g[Li,Lj ] = [Lπ(i),Lπ(j)] and επ(i)π(j) ∈ E . Hence the transformed
matrix επ has zeros on the same irrelevant positions as the matrix ε.

Lemma 3.1. Let Lε be a graded contraction of a graded Lie algebra Γ : L =⊕
i∈I Li. Then Lεπ

is, for any permutation π ∈ ∆Γ Aut Γ, a graded contraction of

L and the Lie algebras Lεπ

and Lε are isomorphic, Lεπ ' Lε.

Proof. For given π ∈ ∆Γ Aut Γ we take any g ∈ Aut Γ such that ∆Γ(g) = π.
Consider

gx = z , gy = w x ∈ Li , y ∈ Lj , z ∈ Lπ(i) , w ∈ Lπ(j) , i, j ∈ I . (23)

Then for all x ∈ Li, y ∈ Lj the bilinear mapping [x, y]επ = επ(i)π(j)[x, y] and the
Lie bracket [x, y]ε = εij [x, y] satisfy

[x, y]επ = επ(i)π(j)[x, y] = επ(i)π(j)g
−1[z, w] = g−1[gx, gy]ε . (24)

Hence Lεπ

is a Lie algebra and g is an isomorphism between Lεπ

and Lε.

3.3 Symmetries of the contraction system

Lemma 3.1 says that for a given contraction matrix ε it is possible to construct
new contraction matrices επ, π ∈ ∆Γ Aut Γ which have to be solutions of the con-
traction system (and correspond to isomorphic Lie algebras). We thus obtained the
substitutions εij 7→ επ(i)π(j), π ∈ ∆Γ Aut Γ under which the set of solutions of the
contraction system is invariant. Now we can also define an action of ∆Γ Aut Γ on
the contraction system S: each equation in S is labeled by a triple of grading
indices and we write e(i j k) ∈ S in the form

e(i j k) : [x, [y, z]ε]ε + cyclically = 0 (∀x ∈ Li)(∀y ∈ Lj)(∀z ∈ Lk) ; (25)
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then for each π ∈ ∆Γ Aut Γ we define the action

e(i j k) 7→ e(π(i) π(j) π(k)) . (26)

Note that equation e(π(i) π(j) π(k)) can be written as

e(π(i) π(j) π(k)) : [gx, [gy, gz]ε]ε + cyclically = 0 (∀x ∈ Li)(∀y ∈ Lj)(∀z ∈ Lk) ,
(27)

where g ∈ Aut Γ, ∆Γ(g) = π ∈ ∆Γ Aut Γ. According to (24) this is equal to

g[x, [y, z]επ ]επ + cyclically = 0 (∀x ∈ Li)(∀y ∈ Lj)(∀z ∈ Lk) (28)

and (28) is satisfied if and only if

[x, [y, z]επ ]επ + cyclically = 0 (∀x ∈ Li)(∀y ∈ Lj)(∀z ∈ Lk) . (29)

Now equation (29) is precisely the equation (25) after the substitution εij 7→
επ(i)π(j). In this way we have not only verified the invariance of the contraction sys-
tem, but also have shown the method of its construction. Having chosen a starting
equation one can write a whole orbit of equations by substituting εij 7→ επ(i)π(j) till
all π ∈ ∆Γ Aut Γ are exhausted. If we denote unordered k–tuple of grading indices
i1, i2, . . . , ik ∈ I as i1 i2 . . . ik and define an action of ∆Γ Aut Γ on unordered
k−tuples as

i1 i2 . . . ik 7→ π(i1) π(i2) . . . π(ik), π ∈ ∆Γ Aut Γ , (30)

then orbits of equations correspond to orbits of unordered triples of grading indices.

3.4 Equivalence of solutions

Combining Lemma 2.2 and Lemma 3.1 we define two solutions ε′, ε ∈ R(S) to be
equivalent, ε′ ∼ ε, if there exists a normalization matrix α and π ∈ ∆Γ Aut Γ such
that

ε′ = α • επ . (31)

If two solutions are equivalent there exist a diagonal mapping h ∈ GL(V ) defined
via formula (15) and an automorphism g ∈ Aut Γ, ∆Γ(g) = π with the property
(24) satisfying

gh[x, y]ε′ = gh[x, y]α•επ = g[hx, hy]επ = [ghx, ghy]ε

and vice versa, i.e. two solution ε′, ε are equivalent, ε′ ∼ ε, if and only if

gh[x, y]ε′ = [ghx, ghy]ε (32)

holds for all x ∈ Li, y ∈ Lj , i, j ∈ I . Let us note that (32) gives

Proposition 3.2. Graded contractions corresponding to equivalent solutions are

isomorphic.
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We introduce a finite matrix group

Hn =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Zn, ad − bc = ±1 mod n

}
. (33)

This group is described in detail in [6]. It contains the subgroup of matrices with
determinant +1 called SL(2,Zn). An important theorem was proved in [6]:

Theorem 3.3. The symmetry group ∆Γn
Aut Γn of the Pauli grading of sl(n, C) is

isomorphic to the matrix group Hn. Denoting by πA the permutation corresponding

to the matrices A ∈ Hn, the action of πA on the indices of the grading group Zn×Zn

is given by

πA(i j) = (i j)A , (34)

where matrix multiplication modulo n is found on the right hand side.

4 Contraction system for the Pauli grading of sl(3, C)

We denote the contraction system for the Pauli grading of sl(n, C) by Sn. This
section is devoted to the contraction system S3. Let us take the Pauli grading in
the form (9), the grading group is Z3 ×Z3; no subspace is labeled by (0, 0). Let us
state the explicit form of matrix ε defined by (10); it is an 8× 8 symmetric matrix
and we will order the indices as in formula (9), i.e. positions 11, 12, 13, . . . are
denoted (01)(01), (01)(02), (01)(10), . . . . Hence the symmetric contraction matrix
ε with 24 relevant variables is of the following explicit form

ε =




0 0 ε(01)(10) ε(01)(20) ε(01)(11) ε(01)(22) ε(01)(12) ε(01)(21)

0 0 ε(02)(10) ε(02)(20) ε(02)(11) ε(02)(22) ε(02)(12) ε(02)(21)

ε(01)(10) ε(02)(10) 0 0 ε(10)(11) ε(10)(22) ε(10)(12) ε(10)(21)

ε(01)(20) ε(02)(20) 0 0 ε(20)(11) ε(20)(22) ε(20)(12) ε(20)(21)

ε(01)(11) ε(02)(11) ε(10)(11) ε(20)(11) 0 0 ε(11)(12) ε(11)(21)

ε(01)(22) ε(02)(22) ε(10)(22) ε(20)(22) 0 0 ε(22)(12) ε(22)(21)

ε(01)(12) ε(02)(12) ε(10)(12) ε(20)(12) ε(11)(12) ε(22)(12) 0 0
ε(01)(21) ε(02)(21) ε(10)(21) ε(20)(21) ε(11)(21) ε(22)(21) 0 0




.

Contraction equations e((ij) (kl) (mn)) ∈ S3 should hold for all possible triples
of indices (ij), (kl), (mn). It is clear that for a triple where two indices are identical,
the equation is automatically fulfilled; the equation also does not depend on the
ordering of the triples. The number of equations is then equal to the combination
number

(
8
3

)
= 56. It is easy to see that equations for which i+k+m = 0 ∧ j+l+n =

0 holds will be fulfilled identically and this situation arises in eight cases. Hence the
contraction system consists of 48 equations. The matrix group of symmetry H3 has
48 elements and there exist exactly two 24–point orbits of triples of grading indices.
We can choose the triples (01)(02)(10) and (01)(10)(11) as representative elements
of these orbits. Moreover, all 24 elements from each orbit can be obtained by the
action of 24 elements from SL(2,Z3) ⊂ H3 starting from an arbitrary point. Then
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for our choice of representative points, our system S3 can be written elegantly as

Sa
3 : ε(02)(10)Aε(01)(12)A − ε(01)(10)Aε(02)(11)A = 0 (35)

Sb
3 : ε(10)(11)Aε(01)(21)A − ε(01)(11)Aε(10)(12)A = 0 ∀A ∈ SL(2,Z3) , (36)

where we used abbreviation ε(ij)(kl)A := ε(ij)A,(kl)A.
Note that there exist dependent equations; equation obtained from (35) by

identity matrix can be written as

ε(01)(10)Xε(02)(11)X − ε(01)(10)ε(02)(11) = 0, X =

(
1 2
0 1

)
. (37)

This is caused by the fact that [(02)(10)][(01)(12)] and [(01)(10)][(02)(11)] lie in
the same orbit with respect to the action of SL(2,Z3), where the pairs of indices in
bracket [ , ] and the pairs of these brackets are unordered. The equation generated
from equation (37) by the matrix A = X

ε(01)(10)X2ε(02)(11)X2 − ε(01)(10)Xε(02)(11)X = 0 (38)

is also contained in Sa
3 , due to (35). Adding equations (37) and (38) we have

ε(01)(10)X2ε(02)(11)X2 − ε(01)(10)ε(02)(11) = 0 . (39)

Since X3 = 1 holds, equation (39) is generated from equation (35) by matrix
A = X2. Therefore we can conclude that the left cosets of the group SL(2,Z3)
with respect to the cyclic subgroup {1, X, X2} then generate just the triples of
dependent equations. The number of these cosets according to the Lagrange’s
theorem is 24/3 = 8. So we obtained 8 equations (one from each coset) which
we eliminate from the system Sa

3 . On the other hand, we observe in Sb
3 that the

quadruples of indices [(10)(11)][(01)(21)] and [(01)(11)][(10)(12)] do not lie in the
same orbit and in this way the equations are independent.

4.1 Solution of the contraction system S3

The goal of this section is to present an algorithm which allows us to determine
all equivalence classes (in the sense of Sect. 3.4) of solutions of the nonlinear
contraction system.

Theorem 4.1. Let R(S) be the set of solutions and I the set of relevant pairs
of unordered indices of the contraction system S of a graded Lie algebra Γ : L =⊕

i∈I Li. For any subsets Q ⊂ R(S) and P = {k1, k2, . . . , km} ⊂ I we denote

R0 :=
{
ε ∈ R(S)

∣∣(∀ε′ ∈ Q)(ε � ε′)
}

,

R1 :=
{
ε ∈ R0

∣∣ (∀k ∈ P)(εk 6= 0)
}

.

Then the solution ε ∈ R0 is inequivalent to all solutions in R1 if and only if

επ1(k1)επ1(k2) · · · επ1(km) = 0

... (40)

επn(k1)επn(k2) · · · επn(km) = 0
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holds, where {π1, π2, . . . , πn} = ∆Γ Aut Γ is the symmetry group of the grading Γ.

Proof. For any ε ∈ R0 we have (see 31):

(∃ε′ ∈ R1)(ε ∼ ε′) ⇔ (∃ε′ ∈ R1)(∃α)(∃π ∈ ∆Γ Aut Γ)(α • επ = ε′) (41)

⇔ (∃α)(∃π ∈ ∆Γ Aut Γ)(α • επ ∈ R0 ∧ (α • επ)k 6= 0, ∀k ∈ P)

(42)

⇔ (∃π ∈ ∆Γ Aut Γ)(∀k ∈ P)((επ)k 6= 0) . (43)

The equivalence (41) is direct consequence of the definition (31), the equivalence
(42) expresses the trivial fact that (∃ε′ ∈ R1)(α • επ = ε′) ⇔ (α • επ ∈ R1). Since
α•επ ∈ R0 is for any ε ∈ R0 automatically fulfilled and (α•επ)k 6= 0 ⇔ (επ)k 6= 0,
the equivalence (43) follows.

Negating (43) we obtain

(∀ε′ ∈ R1)(ε � ε′) ⇔ (∀π ∈ ∆Γ Aut Γ)(∃k ∈ P)((επ)k = 0)

and this is the statement of the theorem.

We call the system of equations (40) corresponding to the sets Q ⊂ R(S) and
P ⊂ I a non-equivalence system.

Repeated use of the theorem leads us to the following algorithm for the evalu-
ation of solutions:

1. we set Q = ∅ and suppose we have a set of assumptions P0 ⊂ I. Then R0 =
R(S), and we explicitly evaluate

R0 =
{
ε ∈ R(S) | (∀k ∈ P0)(εk 6= 0)

}

and write the non-equivalence system S0 of equations (40) corresponding to
Q = ∅, P0.

2. we set Q = R0 and suppose we have the set P1 ⊂ I. Then R0 = R(S ∪ S0),
and we explicitly evaluate

R1 =
{
ε ∈ R(S ∪ S0) | (∀k ∈ P1)(εk 6= 0)

}

and write the non-equivalence system S1 corresponding to Q = R0, P1.

3. we set Q = R0 ∪ R1. Then R0 = R(S ∪ S0 ∪ S1) and we continue till we have
evaluated the whole R(S) up to equivalence, i.e. till we have arrived at such Q
that the corresponding set R0 is empty or trivial.

Using the symmetry group of the Pauli grading of sl(3, C), we have evaluated
the set of all solutions of the corresponding contraction system up to equivalence.
The system of contraction equations S3 has 2 trivial solutions and 178 non-trivial
and non-equivalent ones; of these, 2 solutions depend on two non-zero parameters
and further 11 solutions depend on one non-zero parameter. The complete list of
solutions will be published elsewhere. It serves as an input to a further analysis —
the identification of resulting Lie algebras.

10
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5 Resulting Lie algebras

Structure constants ck
ij ∈ C in a basis {ei}n

i=1 are defined as usual

[ei, ej ] = ck
ijek .

If we denote by e1, . . . , e8 the matrices in (9), i.e.

e1 = Q3 , e2 = Q2
3 , e3 = P3 , e4 = P 2

3 ,

e5 = P3Q3 , e6 = P 2
3 Q2

3 , e7 = P3Q
2
3 , e8 = P 2

3 Q3 ,

then ck
ij are structure constants of sl(3, C) in the basis of the Pauli grading. Thus

the structure constants xk
ij of a contracted Lie algebra Lε corresponding to a solu-

tion ε are given by
xk

ij = εijc
k
ij .

The procedure for identification of contracted Lie algebras is taken from [16] and we
will demonstrate this procedure on a concrete example. Let us consider an example
of the solution of the system S3

ε =




0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0




. (44)

We denote by L = Lε corresponding graded contraction. Non-zero commutation
relations are

[e1, e3] = (ω − 1)e5 , [e2, e4] = (ω − 1)e6 ,

[e3, e5] = (1 − ω)e8 , [e3, e8] = (1 − ω)e1 .

At first we compute a center

C(L) = {x ∈ L | ∀y ∈ L , [x, y] = 0}

and a derived algebra
D(L) = [L,L]

of Lε. The result is

C(L) = {e6, e7} , D(L) = {e5, e6, e8, e1} . (45)

If the complement of the derived algebra in the center X = C(L)\D(L) is non-
empty, then the decomposition of L can be obtained from the decomposition of the
quotient algebra

L/D(L) = X/D(L) ⊕ L̃/D(L) ,

11
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where D(L) ⊂ L̃. In our case the complement of the derived algebra is {e7} and
Lie algebra L is direct sum as follows

L = {e7} ⊕ {e5, e6, e8, e1, e2, e3, e4} . (46)

After the separation of the central component, we denote remaining 7–dimensional
algebra by the same symbol L. Dimensionality of a centralizer of the adjoint
representation in the ring R = C

n,n

CR(ad(L)) = {x ∈ R | ∀y ∈ ad(L) , [x, y] = 0}

is in our case dim(CR(ad(L))) = 5. Lie algebra L is decomposable into a direct
sum of its ideals if and only if there exists a non-trivial idempotent in CR(ad(L)),
i.e. its element with the propriety

0 6= E 6= 1 , E2 = E .

In such a case the decomposition has the form

L = L0 ⊕L1 , [L0,L1] = 0 , [Li,Li] ⊆ Li , i = 0, 1 ,

where L0,L1 are eigen–subspaces of the idempotent E corresponding to the eigen-
values 0, 1. A matrix

M = diag (0, 1, 0, 0, 1, 0, 1) (47)

is a non-trivial idempotent in CR(ad(L)). Eigen–subspaces of M are subalgebras
of L:

L0 = {e5, e8, e1, e3} , L1 = {e6, e2, e4} , (48)

Algebra L is thus the direct sum of its subalgebras

L = {e5, e8, e1, e3} ⊕ {e6, e2, e4} = L0 ⊕L1 . (49)

Subalgebras Li, i = 0, 1 are further indecomposable. We compute a derived
sequence

D0(L) ⊇ D1(L) ⊇ . . . ⊇ Dk(L) ⊇ . . .

D0(L) = L , Dk+1(L) = [Dk(L), Dk(L)]

for both algebras

D0(L0) = {e5, e8, e1, e3} , D1(L0) = {e5, e8, e1} , Dk(L0) = {0} , k ≥ 2 ,

D0(L1) = {e6, e2, e4} , D1(L1) = {e6} , Dk(L1) = {0} , k ≥ 2 .
(50)

and we conclude that algebras L0, L1 are solvable. Afterwards we evaluate a lower
central sequence

(L)
0 ⊇ (L)

1 ⊇ . . . ⊇ (L)
k ⊇ . . .

(L)
0

= L , (L)
k+1

= [(L)
k
,L]

12
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for these algebras

(L0)0 = {e5, e8, e1, e3} , (L0)k = {e5, e8, e1} , k ≥ 1 ,

(L1)0 = {e6, e2, e4} , (L1)1 = {e6} , (L1)k = {0} , k ≥ 2 .
(51)

Hence we see that L1 is moreover nilpotent. Finally an upper central sequence

C0(L) ⊆ C1(L) ⊆ . . . ⊆ Ck(L) ⊆ . . .

C0(L) = 0 , Ck+1(L)/Ck(L) = C(L/Ck(L))

is for both algebras evaluated as follows

Ck(L0) = {0} , k ≥ 0 ,

C0(L1) = {0} , C1(L1) = {e6} , Ck(L1) = {e6, e2, e4} , k ≥ 2 .
(52)

A nilradical is a maximal nilpotent ideal and algebra L0 has 3–dimensional
abelian nilradical {e5, e8, e1}. It turned out that all graded contractions of the Pauli
graded sl(3, C) are solvable or nilpotent algebras and thus the Levi decomposi-
tion into a semidirect sum of a radical R(L) and a semi-simple subalgebra are, like
in this case, trivial.

Computing an algebra of derivations is not a part of the identification procedure
in [16], but we found its invariant dimension very useful in determining the classes
of non-isomorphic results. An algebra of derivations D(L) ⊂ gl(L) contains such
linear mappings D, which for all x, y ∈ L satisfy

D [x, y] = [Dx, y] + [x, Dy] ,

and in our case
dimD(L0) = dimD(L1) = 6 .

We now finish the identification by comparing with names of algebras in [13]
and we have

L = {e7} ⊕ {e5, e8, e1, e3} ⊕ {e6, e2, e4} = {e7} ⊕ A4,6

(±2√
3
,
∓1√

3

)
⊕ A3,1 . (53)

In the Table 1 are summarized numbers of results of graded contractions of the
Pauli graded sl(3, C) after the identification process similar to presented example.
In the first column are the dimensions of non-Abelian parts of Lie algebras and in
other columns are the numbers of obtained Lie algebras. The complete tables with
results, as well as more detailed identification, will be published elsewhere.

Together with the 8–dimensional Abelian Lie algebra and the original Lie alge-
bra sl(3, C) is the number of all contracted algebras 141.
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Table 1. Summary of graded contractions of the Pauli graded sl(3, C)

Dimension Solvable Nilpotent Summary

Indecom. Decom. Indecom. Decom.

3 1 1

4 1 1 2

5 1 4 5

6 1 8 1 10

7 4 1 24 1 30

8 11 2 75 3 91
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[9] M. Havĺıček, J. Patera, E. Pelantová and J. Tolar: in Quantum Theory and Symme-

tries 2, E. Kapuscik and A. Horzela eds., World Scientific, Singapore, 2002, 366–370.

[10] F. Herranz and M. Santander: J. Phys. A: Math. Gen. 29 (1996) 6643.

[11] N. Jacobson: Lie Algebras, Dover, New York, 1979.

[12] M. de Montigny and J. Patera: J. Phys. A: Math. Gen. 24 (1991) 525.

[13] J. Patera, R.T. Sharp, P. Winternitz and H. Zassenhaus: J. Math. Phys. 17 (1976)
986.

[14] J. Patera and H. Zassenhaus: J. Math. Phys. 29 (1988) 665.

[15] J. Patera and H. Zassenhaus: Lin. Alg. Appl. 112 (1989) 87.

[16] D. Rand, P. Winternitz and H. Zassenhaus: Lin. Alg. Appl. 109 (1988) 197.

[17] E. Weimar-Woods: J. Math. Phys. 32 (1991) 2028.

[18] E. Weimar-Woods: J. Math. Phys. 36 (1995), 4519.

14


