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A one–dimensional model with interacting families of Calogero–type particles is stud-
ied. It includes harmonic, two–body and three–body interactions among particles. We
find the exact eigenenergies corresponding to a class of the exact eigenstates of the model.
We emphasize the universal SU(1, 1) structure of the model. We show how SU(1, 1) gen-
erators for the whole system are composed of SU(1, 1) generators of arbitrary subsystems.
By imposing the conditions for the absence of the three–body interaction, we find certain
relations between the coupling constants.
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1 Introduction

More than thirty years ago, in his seminal paper [1] Calogero solved the 1D
quantum–mechanical problem of N equal particles of mass m interacting pairwise
with quadratic (’harmonic’) and inverse–quadratic (’centrifugal’) potentials.

The Hamiltonian of the model is essentially given by (h̄ = 1 and i, j = 1, 2, . . . , N)

H = − 1

2m

∑

i

∂2
i

∂x2
i

+
mω2

2

∑

i

x2
i +

ν(ν − 1)

2m

∑

i6=j

1

(xi − xj)2
. (1)

Here, ν(ν −1) ≥ −1/4 is the dimensionless coupling constant and ω is the strength
of a harmonic potential.

The exact wave functions of the Calogero model (1) are highly correlated. These
correlations are encoded in the wave functions in the form of the Jastrow factor
∆ =

∏

i<j |xi − xj |ν . The exponent of the correlator is just the strength of the
inverse–square interaction. For example, the ground state wave function is simply
the product of the Jastrow factor and Gauss function

Ψ0(x1, x2, · · · , xN ) =
∏

i<j

|xi − xj |ν · exp

(

−mω

2

∑

i

x2
i

)

. (2)

Calogero was also able to show that the complete set of energy eigenvalues had a
form

En1,n2,···,nN
= ω

(

N

2
+

νN(N − 1)

2

)

+ ω
∑

i

ni = E0 + ω
∑

i

ni . (3)
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The non-negative (integer) quantum numbers ni obey selection rule ni ≤ ni+1. It
is remarkable that, apart from a constant shift for all energy levels, the spectrum
(3) coincides with that of the N–body system with harmonic forces only. It may
be also noted that the strength of the inverse–square interaction (ν) affects only
the ground state energy E0.

The Eq.(3) can be rearranged in the form of energy eigenvalues for free oscilla-
tors

En1,n2,···,nN
= ω

(

N

2

)

+ ω
∑

k

n̄k (4)

by introducing ’renormalized’ quantum numbers n̄k = nk + ν(k − 1). It is clear
that these n̄ks cannot be integers and they satisfy a new selection rule n̄k+1 −
n̄k ≥ ν, that is the lowest particle remains in its place, the second lowest one
gets shifted by ν units etc. As a consequence, the Calogero model (1) provides
a microscopic realization of the generalized Haldane exclusion statistics [2], with
coupling constant ν playing the role of Haldane statistical parameter. In Haldane’s
formulation, however, there is the possibility of having particles of different species
with a mutual statistical parameter depending on the species coupled. This suggests
the generalization of the single-species 1D Calogero model to the multispecies 1D
Calogero model. Distinguishability of the species can be introduced by allowing
particles to have different masses (mi) and different couplings (νij) to each other.
In fact, this kind of generalization has already been suggested in [1] (although not
using statistical arguments) and since then several authors discussed it throughly
[3] but in spite of a lot of efforts, up to now very little is known about spectra and
wave functions of this model.

In the same reference [1], Calogero also considered a slightly generalized variant
of the model (1), in which the N particles were partitioned into F families of Na

particles, N =
∑

Na, with the same harmonic interaction for all particles but with
the inverse–square interaction acting only between particles belonging to the same
family. The strength of the inverse–square interaction was allowed to be different for
different families. It turns out that the spectrum of such a model is straightforward
generalization of (3). The next step may be inclusion of interaction(s) between
different families and some results for a such kind of model(s) are also available [4].

Recently, following our earlier investigation of a certain aspects of 1D Calogero
model [5], we defined a multispecies Calogero model in 1D [6] and generalized it
immediately to an arbitrary number of dimensions [7]. We succeeded in finding a
class of exact eigenstates and eigenenergies of the both models. The analysis re-
lied heavily on the SU(1, 1) algebraic structure of the corresponding Hamiltonians.
Using the results obtained in Ref.[6], we were able to consider the problem of inter-
acting families of Calogero–type particles in one dimension in a more transparent
fashion than in [4] and in a more general way than in [1]. Precisely, we considered
a model with a potential that generally includes harmonic, two–body and three–
body interactions acting between particles belonging to different families, as well
as the interaction between particles belonging to the same family with the coupling
constant that may be different for different families [8].
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In a present paper we review some salient features of the model studied in [6,8].
In Sec.2 we prepare all necessary tools for handling the problem of interacting fami-
lies. We collect the main results of the analysis of the one–dimensional multispecies
Calogero model [6]. We display the model Hamiltonian and discuss the conditions
for the absence of the three–body interaction. Utilizing SU(1, 1) structure of the
Hamiltonian, we reproduce a part of its spectrum corresponding to the global col-
lective states. In Sec.3 we apply these results to the case of two interacting families
of Calogero particles. We construct generators of SU(1, 1) algebra for interacting
families and underline the importance of the dilatation part of the algebra, i.e.
generator T0. By imposing the conditions for the absence of the three–body in-
teraction, we find certain relations between the coupling constants (’weak–strong’
duality relations). The obvious generalization to the F–family model is briefly
sketched in concluding Section 4.

2 1D multispecies Calogero model: main results

The model we are going to discuss is a multispecies generalization of (1). It is
specified by masses of particles, mi, and the coupling constants ω and νij , i, j =
1, 2, . . . , N . The Hamiltonian reads:

H(ω) = −1

2

∑

i

1

mi

∂2

∂x2
i

+
ω2

2

∑

i

mix
2
i +

1

4

∑

i6=j

νij(νij − 1)

(xi − xj)
2

(

1

mi

+
1

mj

)

+

+
1

2

∑

i6=j,i6=k,j 6=k

νijνjk

mj(xj − xi)(xj − xk)
. (5)

The ground state wave function is of the Calogero type (2):

Ψ0(x1, . . . , xn) =
∏

i<j

|xi − xj |νij · exp

(

−ω

2

∑

i

mix
2
i

)

≡

≡ ∆ · exp

(

−ω

2

∑

i

mix
2
i

) (6)

and the corresponding ground state energy is

E0 = ωε0 = ω





N

2
+
∑

i<j

νij



 . (7)

A few additional remarks concerning the Hamiltonian (5) are in order. First, it
describes distinguishable particles on the line, interacting with harmonic, two–
body and three–body potentials. An earlier attempt to solve the similar, but less
general Hamiltonian can be find in [3]. The appearance of the generalized Jastrow
factor ∆ in (6) has the same origin as in the Calogero model (1); namely, because
the singular nature of the Hamiltonian (5) for xi = xj , the wave function (6) ought
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to have a prefactor that vanish for coincident particles. Also, a stability condition
demands that the two–body couplings νij(νij − 1) should be greater than −1/4,
∀i, j.

Let us consider the last term in Eq.(5), namely the three–body interaction,
more closely. If we put mj = m = const. in (5) (∀j), symmetrize under the
cyclic exchange of the indices (i → j → k → i) and reduce the sum to a common
denominator using the identity

∑

cycl.

1

(xi − xj)(xi − xk)
= 0 ,

we obtain that the necessary condition for vanishing of the three–body interaction
is νij = ν = const. (∀i, j). In this way, the problem (5) is reduced to the ordinary
N–body Calogero model with harmonic and two–body interactions only (1).

For the general νij and mj , it can be shown that the following conditions for
the absence of the three–body term must hold:

νijνjk

mj

=
νjkνki

mk

=
νkiνij

mi

, ∀(i, j, k) . (8)

The unique solution of these conditions is νij = λ mi mj , λ being some unspecified
universal constant. It should be mentioned that the above arguments cannot be
applied in higher dimensions, so the three-body interaction is generic for higher–
dimensional multispecies model [7].

In an attempt to solve the Hamiltonian (5), we proceed in the following way. We
extract the Jastrow factor ∆ from the wave function (6) and perform a similarity
transformation of the Hamiltonian (5), i.e.

Ψ̃ = ∆−1Ψ ,

H̃(ω) = ∆−1H(ω)∆ .

We find H̃(ω) as

H̃(ω) = −1

2

∑

i

1

mi

∂2

∂x2
i

+
ω2

2

∑

i

mix
2
i −

1

2

∑

i6=j

νij

(xi − xj)

(

1

mi

∂

∂xi

− 1

mj

∂

∂xj

)

=

= ω2T+ − T− . (9)

It should be stressed at this stage that the three–body interaction is not actually
removed by similarity transformation (in a sense of preceding discussion); rather, it
is hidden in H̃(ω). Nevertheless, the new Hamiltonian (9) has a much simpler struc-
ture than (5) and allows us to construct the representation of a spectrum generating
algebra SU(1, 1). With help of its generators, we will be able to find algebraically a
class of the exact eigenstates and eigenenergies of H̃(ω) and consequently, of H(ω).

We define the set of operators {T±, T0} that satisfy the SU(1, 1) algebra

[T−, T+] = 2T0 , [T0, T±] = ±T± .
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as

T− = −H̃(ω = 0) , T+ =
1

2

∑

i

mix
2
i ,

T0 =
1

2

(

∑

i

xi

∂

∂xi

+ ε0

)

.

(10)

Note that T0 serves as a dilatation operator. One can deduce two important rela-
tions which will be extensively used later:

T0∆ =





1

2

∑

i<j

νij +
ε0
2



∆ , T−∆ = 0 . (11)

The Jastrow factor just appears to be the lowest weight vector for T− and an
eigenstate of dilatation part of the algebra.

The infinite set of exact eigenstates of the Hamiltonian (9) can be constructed
by applying ladder operators

A±
1 =

1√
2

(√
MωX ∓ 1√

Mω

∂

∂X

)

(12)

and

B±
2 =

1

2

(

ωT+ +
T−

ω

)

∓ T0 −
1

2
A±

1

2
(13)

to the vacuum

Ψ̃0(x1, x2, . . . , xN ) = Ψ̃0(X)Ψ̃0(ξ1, ξ2, . . . , ξN ) =

= exp

(

−Mω

2
X2

)

· exp

(

−ω

2

∑

i

miξ
2
i

)

.

Here, we have introduced for convenience the center-of-mass (CM) coordinate X =
1

M

∑

i

mixi (where M is total mass of the system) and relative (R) coordinates

ξi = xi − X .
The exact eigenstates (corresponding to the center-of-mass states and global

dilatation states) are

Ψ̃n1n2
=
(

A+
1

)n1
(

B+
2

)n2

Ψ̃0 , n1, n2 = 0, 1, 2, . . . . (14)

Their eigenenergies can be deduced from relations

H̃CM =
1

2
ω{A−

1 , A+
1 }+ , H̃R = ω[B−

2 , B+
2 ] ,

[H̃CM , A±
1 ] = ±A±

1 , [H̃R, B±
2 ] = ±2ωB±

2 ,

yielding
En1,n2

= ω(n1 + 2n2) + E0 . (15)
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The energy spectrum is linear in quantum numbers and highly degenerate. It can
be shown that the dynamical symmetry responsible for this degeneracy is SU(2),
i.e. the same symmetry underlying the two–body Calogero model [6].

In the next section we apply these results to the case of two interacting families.

3 Two interacting families of Calogero particles

Let us consider two families, F1 and F2, of Calogero particles. The first one,
denoted by F1 = {m1, ν1, N1}, is described by N1 particles of mass m1, the cou-
pling constant ν1 and the coordinates of the particles are {xi} = {x1, x2, . . . , xN1

}.
Similarly, the second one, denoted by F2 = {m2, ν2, N2}, is described by N2 parti-
cles of mass m2, the coupling constant ν2 and the coordinates of the particles are
{zα} = {z1, z2, . . . , zN2

}. The interaction strength between the first and the second
family is ν12 = κ.

The full Hamiltonian now reads

H(ω) = H1(ω) + H2(ω) + Hint , (16)

where Hint is given by

Hint =
1

4

N1
∑

i

N2
∑

α

κ(κ − 1)

(xi − zα)2

(

1

m1
+

1

m2

)

+ (17)

+
1

4

N1
∑

i

N2
∑

α6=β

(

κ2

m1(xi − zα)(xi − zβ)

)

+
1

2

N1
∑

i

N2
∑

α6=β

(

ν2κ

m2(zα − xi)(zα − zβ)

)

+

+
1

4

N1
∑

i6=j

N2
∑

α

(

κ2

m2(zα − xi)(zα − xj)

)

+
1

2

N1
∑

i6=j

N2
∑

α

(

ν1κ

m1(xi − zα)(xi − xj)

)

,

and H1(ω) (H2(ω)) are generalized Calogero Hamiltonians, Eq.(5), for the first and
the second family, respectively.

The corresponding ground state wave function of the Hamiltonian (17) is

Ψ0(x1, . . . , xN1
, z1, . . . , zN2

) =
∏

i,α

(xi − zα)κΨ0,1(x1, . . . , xN1
)Ψ0,2(z1, . . . , zN2

) ≡

≡ ∆12Ψ0,1(x1, . . . , xN1
)Ψ0,2(z1, . . . , zN2

) ≡ ∆12∆1∆2(Gauss) , (18)

where Ψ0,1 and Ψ0,2 are the Calogero ground states (6) (when κ = 0) for the
families F1 and F2, respectively.

The ground state energy of the Hamiltonian (16) can be split into three terms:

ε0 = ε0,1 + ε0,2 + κN1N2 , (19)

describing the ground state energies of each family and the interaction between
them.
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We can perform a similarity transformation with a ∆1∆2 part of the full Jastrow
factor ∆ = ∆1∆2∆12 in (16, 18), to obtain

∆1
−1∆2

−1H(ω)∆1∆2 = H̃1(ω) + H̃2(ω) + Hint ,

∆1
−1∆2

−1Ψ0 =
∏

i,α

(xi − zα)κΨ̃0,1Ψ̃0,2 . (20)

The SU(1, 1) structure for the interacting families can be read off as follows. Within

each family, one can define SU(1, 1) generators T
(I)
± and T

(I)
0 (I = 1, 2) as in

Eq.(10). These two sets of generators mutually commute. When interaction be-
tween families is switched on (Hint 6= 0), the full set of the SU(1, 1) generators
are

T0 = T
(1)
0 + T

(2)
0 + 1

2κN1N2 ,

T− = T
(1)
− + T

(2)
− − Hint ,

T+ = T
(1)
+ + T

(2)
+ ,

(21)

and Eqs.(11) generalize to

T0∆12 =
1

2
(κN1N2 + ε0)∆12 , T−∆12 = 0 . (22)

It is instructive to see what happens when the conditions (8) for the vanishing
of the three–body interaction are satisfied. It means that the masses and coupling
constant in our two–family system are related according to νij = λmimj = κ , or
explicitly

ν1 = λm2
1 , ν2 = λm2

2 , ν12 = κ = λm1m2 , (23)

from which it follows

ν1ν2 = κ2 ⇒ ν2 =

(

m2

m1

)2

ν1 (24)

Note that Eqs.(23, 24) imply that the couplings ν1, ν2 and κ have to be simulta-
neously positive, negative or zero.The connection between the coupling constants
{ν1, ν2, κ}, Eq.(24), is sometimes ascribed to the ’weak–strong’ coupling duality,
but it is de facto a simple consequence of the absence of the three–body interaction
in the starting Hamiltonian (5).

Let us demand that the ground state energies of the both families are equal,
ε0,1 = ε0,2, which implies (see Eqs.(3) or (7))

N1 + ν1N1(N1 − 1) = N2 + ν2N2(N2 − 1) . (25)

If we fix κ2 = 1 in (24), then the quadratic equation (25) has two distinct solutions

(i) ν1 =
N2 − 1

N1 − 1
> 0 ,

(ii) ν1 = −N2

N1
< 0 .

7



M. Mileković et al.

Table 1. Physical implications

ν1 κ λ ε0 Comments

N2−1

N1−1
+1 λ > 0 2N1N2 > 0

Physical solution,
no three–body interaction.

−

N2

N1

+1 – N1 + N2 > 0
Physical solution,

with a three–body interaction.

N2−1

N1−1
−1 – 0

Unphysical solution,
with a three-body interaction.

−

N2

N1

−1 λ < 0 N1 + N2 − 2N1N2 < 0
Unphysical solution,

no three–body interaction.

Their physical implications are summarized in Table 1.
In Refs.[5 – 7] we showed that there existed a critical point ε0R = 0 at which

the system described by H̃R collapsed completely, i.e. the relative momenta, the
relative energy and the relative coordinates were all zero at this critical point. The
ground state was a square–integrable function only for ε0R > 0. This is the reason
why we ascribe the term ’unphysical’ to the last solutions in Table 1.

4 Conclusion and outlook

It is obvious how to generalize the results of the preceding section to the case of
three and more families. For example, in the case of the three families of Calogero
particles, F1, F2 and F3, the wave function (18) contains Jastrow factors

∆ = ∆1∆2∆3∆12∆13∆23

and the composition law (21) generalizes to

T0 =

3
∑

I=1

T
(I)
0 +

1

2

∑

I<J

νIJNINJ ,

T− =

3
∑

I=1

T
(I)
− − Hint ,

T+ =

3
∑

I=1

T
(I)
+ .

(26)

Similarly, Eqs.(11,22) now read

T0

(

∏

I<J

∆IJ

)

=
1

2

(

ε0 +
∑

I<J

νIJNINJ

)(

∏

I<J

∆IJ

)

,

T−

(

∏

I<J

∆IJ

)

= 0 .

(27)
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For the general case of F–families the following relations, in connection with
the composition law for the SU(1, 1) generators, should be used

ε0 =
F
∑

I=1

ε0,I +
F
∑

I<J;I,J=1

ε0,IJ ,

ε0,I =
NI

2
+ νI

NI(NI − 1)

2
, ε0,IJ = νIJ NI NJ .

We must emphasize that aforementioned relations between SU(1, 1) generators
are universal for all choices of masses and coupling constants. Moreover, the same
relations are valid for an arbitrary number of dimensions and for all potentials that
behave as a kinetic energy term under the dilatation represented by the generator
T0. There is only one difference between one and higher dimensions. In the case
of one dimension, as we already stated in connection with Eq.(8), one can exclude
the three–body interaction between particles from the beginning, while there is no
known way how to do this in dimensions higher than one. Our results can also
be extended to other systems with the underlying conformal or superconformal
symmetry.
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