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1 Self-dual structures with two commuting isometries

Let us recall that for an Euclidean space in D = 4 the rotation group SO(4) is
locally isomorphic to SU(2)×SU(2) and therefore the Weyl tensor W decomposes
as W = W+ ⊕ W− where the components W± corresponds to one of the SU(2)
groups. W is by definition the conformal invariant part of the Riemann tensor, this
means that is unchanged under an scaling g → Ω2g. A conformal structure [g] is
defined as the family of metrics obtained from g by conformal transformations. If
W− = 0 for a given g of [g] then g is called self-dual and, by conformal invariance,
[g] will be a self-dual structure.

Let us focus in families [g] with two commuting U(1) isometries. Then the
representatives g of [g] takes locally the Gowdy form

g = gabdxadxb + gαβdxαdxβ . (1)

The latin indices a, b corresponds to vectors on N and the greek indices α, β to
vectors on T 2. Both gab and gαβ are supposed to be independent of xα = (θ, ϕ). It
is seen that the Killing vectors are ∂/∂θ and ∂/∂ϕ and the level surfaces of constant
θ and ϕ are orthogonal to both Killing fields.

By a theorem due to Gauss there exists a local scale transformation g → Ω2g
which reduce (1) to

g = dρ2 + dη2 + g̃αβdxαdxβ . (2)

Because self-duality is a property of [g] rather than g there is not loss of generality
in consider the anzatz (2) instead of (1). Define the basis (e1, e2) such that

g̃αβdxαdxβ = e2
1 + e2

2 .
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There exist a linear transformation T connecting the basis (ρdθ, ρdϕ) with (e1, e2),
which we will write as

T =

(
A0 A1

B0 B1

)
,

where Ai and Bi are certain functions of (ρ, η). By calculating T−1 it is seen that
the angular part of g can be expressed as

g̃αβdxαdxβ =
(ρA0dθ − ρB0dϕ)2 + (ρA1dθ − ρB1dϕ)2

(A0B1 − A1B0)2
. (3)

The advantage of this form is that the self-duality condition is equivalent to a
system of linear equations. Imposing the condition W− = 0 for (2) gives the
following proposition [1]:

Proposition 1 Any self-dual g with two commuting killing vectors ∂/∂θ and ∂/∂ϕ
over M = N × T 2 is locally conformal to a self-dual metric gj of the form

gj = (A0B1 − A1B0)
dρ2 + dη2

ρ2
+

(A0dθ − B0dϕ)2 + (A1dθ − B1dϕ)2

A0B1 − A1B0

, (4)

where the functions Ai satisfies

(A0)ρ + (A1)η =
A0

ρ
, (5)

(A0)η − (A1)ρ = 0 , (6)

and the same equations holds for Bi.

Equations (5) and (6) are equivalent to the condition W− = 0. The Joyce
metrics (4) are obtained by introducing (3) in (2) and making a conformal scaling
with a factor (A0B1 − A1B0)/ρ2. Such form is more convenient in order to find
the Einstein metrics among the Joyce ones. Therefore the problem to find toric
self-dual structures in D = 4 has been reduced to solve a linear system for Ai and
independently for Bi. The original proof of proposition 1 has been obtained in a
rather different way than here; it is based on a method discussed in Appendix B.

It should be noted that (6) implies that

A0 = Gρ , A1 = Gη (7)

for certain potential function G. Then (5) implies that Gρρ + Gηη = Gρ/ρ. Con-
versely (5) implies that

A0 = −ρVη , A1 = ρVρ (8)

and (6) gives the Ward monopole equation [5]

Vηη + ρ−1(ρVρ)ρ = 0 , (9)
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which has been proven to describe hyperkahler metrics with two commuting isome-
tries. The relations

Gρ = −ρVη = A0 , Gη = ρVρ = A1 (10)

constitute a Backlund transformation allowing to find a monopole V starting with
a known G or viceversa. The functions Bi can be also expressed in terms of another
potential functions G′ and V ′ satisfying the same equations than V and G.

2 The Toda structure

In the first section we have described the families of self-dual structures with T 2

isometry. In this section we extract the Einstein representatives among the Joyce
ones, in four dimensions an Einstein self-dual metric is automatically quaternionic
Kahler. In order to achieve this we should use the following theorem [3]:

Proposition 2 Any self-dual Einstein metric g with one Killing vector in D = 4
there exist a system of coordinates (x, y, z, t) for which takes the form

g =
1

z2

[
U

(
eu(dx2 + dy2) + dz2

)
+

1

U
(dt + A)2

]
. (11)

The functions (U, A, u) are independent of the variable t and satisfies

(eu)zz + uyy + uxx = 0 , (12)

dA = Uxdz ∧ dy + Uydx ∧ dz + (Ueu)zdy ∧ dx , (13)

U = 2 − zuz . (14)

Conversely, any solution of (12), (12) and (14) define by (11) a self-dual Einstein
metric.

Equation (14) is the Einstein condition and if it is relaxed we get Jones–Tod
correspondence [4]. The integrability condition for the existence of A is

(Ueu)zz + Uyy + Uxx = 0 (15)

and is easily seen that (14) satisfies it. Then the problem to find the Einstein
metrics among the Joyce ones is to reduce them to the form (11) and then to apply
(14). The result will be an extra relation between the functions Ai and Bi and the
resulting metrics will be toric self dual Einstein.

The first task is to find a new coordinate system (x, y, z, t) for the Joyce metrics
(4) defined in terms of the old one (ρ, η, θ, ϕ) for which they are expressed as

g = U
(
eu(dx2 + dy2) + dz2

)
+

1

U
(dt + A)2 . (16)
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according to (11). To do this it is needed to write (4) as

gj =
A0B1 − A1B0

ρ2(A2
0 + A2

1)

(
(A2

0 + A2
1)(dρ2 + dη2) + ρ2dϕ2

)
+

+
A2

0 + A2
1

A0B1 − A1B0

(
dθ −

(A0B0 + A1B1)dϕ

A2
0 + A2

1

)2 (17)

and is seen that after rescaling by ρ and identifying t = θ that it takes the form
(11) with

eu(dx2 + dy2) + dz2 = (A2
0 + A2

1)(dρ2 + dη2) + ρ2dϕ2 , (18)

A = −
(A0B0 + A1B1)

A2
0 + A2

1

dϕ , U =
A1B0 − A0B1

ρ(A2
0 + A2

1)
. (19)

The factor ω can be calculated through dA = ∗h(dU − Uω) and is

ω = −
2A0

ρ(A2
0

+ A2
1
)

dG , dG = −ρVηdρ + ρVρdη . (20)

The next problem to find the coordinates (x, y, z) as functions of (ρ, η, ϕ) for
which (18) holds. Using the equation we can write the two differentials (9)

dV = Vρdρ + Vηdη ,

dG = ρ(Vρdη − Vηdρ)

and it can be easily checked that

dG2 + ρ2dV 2 = ρ2(V 2
η + V 2

ρ )(dρ2 + dη2) = (A2
0 + A2

1)(dρ2 + dη2) ,

where in the last step formula (8) has been used. From the last expression is seen
that (18) is

eu(dx2 + dy2) + dz2 = ρ2(dV 2 + dϕ2) + dG2 . (21)

Equation (21) shows that a solution u(x, z) of the continuum Toda equation is
defined by the identifications

eu = ρ2 , x = V , y = ϕ , z = G . (22)

The solution u is independent of y is due to the presence of the other isometry,
which is also a symmetry of h. Formula (22) defines the coordinate system that we
were looking for.

At first sight (22) relates the solutions of the axially symmetric Toda equation
with two solutions V and G of two different linear differential equations. But they
are related by a Backlund transformation and it can be directly checked that if V
is a Ward monopole, then W such that Wη = V is also a Ward monopole and it
follows that G = ρWρ. Inserting the expressions in terms of W in (22) and changing
the notation replacing W by V by convenience gives the following proposition [5]:
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Proposition 3 Any solution V of the equation Vηη +ρ−1(ρVρ)ρ = 0 defines locally
the coordinate system (x, z)

x = Vη , z = ρVρ , (23)

in terms of (ρ, η) and conversely (23) defines implicitly (ρ, η) as functions of (x, t).
Then the function u(x, z) = log(ρ2) is a solution of the axially symmetric Toda
equation

(eu)zz + uxx = 0 . (24)

This procedure can be inverted in order to find a Ward monopole V starting with a
given Toda solution.

Proposition 3 gives a method to find solutions of a non linear equation (the
continuum Toda one) starting with a solution of a linear one (the Ward equation).
But it is difficult in practice to find explicit solutions of (24) and usually proposition
4 gives implicit solutions.

An important detail is that the Toda structure (18) and the Toda solution u are
completely determined just in terms of Ai. Only the monopole (U, A, ω) depends
on both Ai and Bi, which are not related in any way.

For Joyce spaces the relation ω = −uzdz and (20) gives

uz =
A0

ρ(A2
0 + A2

1)
, 2 − zuz =

ρ(A2
0 + A2

1) − GA0

ρ(A2
0 + A2

1)
.

Then the insertion of the expression for U (19) in terms of Ai and Bi into the
Einstein condition U = 2 − zuz gives

A1B0 − A0B1 = ρ(A2
0 + A2

1) − GA0 .

Thus B0 = ρA1 + ξ0 and B1 = G − ρA0 + ξ1 with A1ξ0 = A0ξ1. The functions ξi

are determined by asking Bi to satisfy the Joyce system (5) and (6), the result is
ξ0 = −ηA0 and ξ1 = −ηA1. Therefore the metric gj/ρz2 is Einstein if and only if

A0 = Gρ , A1 = Gη , (25)

B0 = ηGρ − ρGη , B1 = ρGρ + ηGη − G , (26)

which is the Calderbank–Pedersen solution. Defining G =
√

ρF it follows that F
satisfies

Fρρ + Fηη =
3F

4ρ2
.

Then inserting (25) and (26) expressed in terms of F into gj/ρz2 and making the
identification z = G gives the following proposition [2]:

Proposition 4 For any Einstein–metric with self-dual Weyl tensor and nonzero
scalar curvature possessing two linearly independent commuting Killing fields there
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exists a coordinate system in which the metric g has locally the form

ds2 =
F 2 − 4ρ2(F 2

ρ + F 2
η )

4F 2

dρ2 + dη2

ρ2
+

+
[(F − 2ρFρ)α − 2ρFηβ]2 + [(F + 2ρFρ)β − 2ρFηα]2

F 2[F 2 − 4ρ2(F 2
ρ + F 2

η )]
,

(27)

where α =
√

ρdθ and β =
ϕ + ηdθ

√
ρ

and F (ρ, η) is a solution of the equation

Fρρ + Fηη =
3F

4ρ2
. (28)

on some open subset of the half–space ρ > 0. On the open set defined by F 2 >
4ρ2(F 2

ρ +F 2
η ) the metric g has positive scalar curvature, whereas F 2 < 4ρ2(F 2

ρ +F 2
η ),

g is self-dual with negative scalar curvature.

The Einstein condition Rij = κgij is not invariant under scale transformations,
so Proposition 4 gives all the quaternionic–Kahler metrics with T 2 isometry up to
a constant multiple. The problem to find them is reduced to find an F satisfying
the linear equation (28), that is, an eigenfunction of the hyperbolic laplacian with
eigenvalue 3/4.

To finish we recall that this result has many applications in different areas of
physics. For an account references [8] – [16] can be useful.

O.P.S acknowledges to Cestmir Burdik and all the organizers for allow him to participate

in this conference.
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