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We study the perturbation theory for the example of a topological Batalin–Vilkovisky
theory and show that it is free from the UV divergences. In fact, the property of finiteness
can be generalized for some class of theories, which we describe here. 3–dimensional
Chern–Simons and 2–dimensional topological Yang–Mills theories belong to this class.
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1 Introduction

At the last decade it became obvious, that BV formalism and homological al-
gebra can be useful tools for investigating a big amount of theories. Among them
there are SUSY YM and CS [5]. In the current work we describe a simple model
of the BV theory, which is topological and in particular case coincides with the CS
theory.

This text is organized as follows. First we formulate concerned theory, which
we call ω–theory. After a brief overview of the BV formalism we show the way of
quantizing of ω–thoery, build the perturbation theory and prove that this theory is
free from the UV divergences. At the end we give a slight generalization of obtained
results.

2 ω−theory

The action of ω–theory is:

S = Tr

∫

Md

ω dω +
2

3
ω3 . (1)

Here we used the following notations:

MD is a compact D–dimensional manifold without boundary, D = 2N + 1,
N ∈ N.

ω ∈ Ω•(Md, g) — i.e ω is a polyform with values in g (which is a Lie algebra
for this theory). More explicitly:

ω = ω(0) + ω(1) + . . . + ω(d) = ω(0) + dxi1ω
(1)
i1

+
1

2!
dxi1dxi2ω

(2)
i1i2

+

+ · · ·+ 1

d!
dxi1 . . . dxidω

(d)
i1...id

.
(2)
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It is useful to introduce the following Z2–gradings:

gh(ω
(k)
i1...ik

) = 0, if ω
(k)
i1...ik

is boson field;

gh(ω
(k)
i1...ik

) = 1, if ω
(k)
i1...ik

is fermion field;

deg(ω(k)) = k mod 2;

ε
(

ω(k)
)

=
(

gh(ω(k)) + deg(ω(k))) mod 2
)

.

We impose an additional condition on ω: ε(ω) = 1.

3 Quantization

We will quantize this theory using the BV–formalism [1], [3].
Let’s briefly remind the procedure of BV–quantizing.

– Consider some set of boson and fermion fields ΦA, A = 1, N and the same
set of fields Φ∗

A, but with opposite statistics: gh(ΦA) =
(

gh(Φ∗
A) + 1

)

mod 2
(here gh is just an indicator of fermion fields and such notation is used for
coinciding with other notations in this paper)

– BV–action is a function of this fields (S = S(Φ, Φ∗)) and satisfies BV–
equation:

1

2
(S, S)BV = i~∆BV S ⇔ ∆BV eiS/~ = 0 . (3)

Here

(F, G)BV = F

(←−−−
∂

∂ΦA

−−−→
∂

∂Φ∗
A

−
←−−−

∂

∂Φ∗
A

−−−→
∂

∂ΦA

)

G ,

∆BV =

−−−→
∂

∂Φ∗
A

F

←−−−
∂

∂ΦA
.

In general case BV–bracket (·, ·)BV and BV–Laplacian ∆BV are constructed
by using the symplectic structure Ω. Here Ω = δΦA ∧ δΦ∗

A.

– Using such action, we can build the quantum field theory. For this in the
path integral we integrate not over all fields, but only over a Lagrangian
submanifold: Z =

∫

LDΦDΦ∗eiS/~ (Lagrangian submanifold is a submanifold
of maximal dimension, on which symplectic structure equal to zero). Such
procedure is well-defined, and, in particular, variation over L equals zero.

Now we’ll show that ω–theory is a BV–theory. Let’s divide ω into two parts:
ω = ω1 + ω2 such, that: deg(ω1) = gh(ω2) = 1, deg(ω2) = gh(ω1) = 0.

Due to the Hodge duality ω1 can be treated as Φ, and ω2 as Φ∗.
The symplectic structure is Ω = Tr

∫

δω1 ∧ δω2.

Thus (S, S)BV ∝ Tr

∫

δS

δω1
∧ δS

δω2
, ∆BV ∝ Tr

∫

δ

δω1

δ

δω2
S.

A direct calculation yields: ∆BV S = 0 and (S, S)BV = 0.
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We define the Lagrangian submanifold by condition d∗ω = 0.

For further correct work we have to say some words about cohomology. Even
after imposing the condition d∗ω = 0, operator d in the kinetic term, restricted
to the Lagrangian submanifold, have a kernel. This kernel consists exactly of
operator’s cohomology. For taking this into account we will decompose ω into two
parts: ω = ω̃ + ω0, where ω0 is a representative of the cohomology group. This
decomposition is fixed uniquely by imposing an additional condition

∫

ω̃ω0 = 0.

We will treat ω0 as an external field (i.e. ω0 becomes now a parameter of the
theory). In particular, we will not integrate over it in the path integral.

Now we can define correlators in the quantized ω–theory:

〈H〉 =
∫

Dω̃δ(d∗ω̃)HeiS(ω̃+ω0)/~ . (4)

Note, that 〈H〉 will not depend on the Lagrangian submanifold, if ∆BV

(

HEiS/~
)

=
0.

4 The perturbation theory

We’ll build the perturbation theory treating interacting term as small. In fact,
the expansion in this theory will go over ~. This becomes obvious after fields’
rescaling ω →

√
~ ω and noticing, that parity of number of vertexes in all orders of

perturbation theory is the same.

The perturbation theory is built absolutely in the standard way and we’ll not
describe it in details. This is not our aim. Vertexes here are obtained from Tr

∫

ω3.
So we have three vertexes: Tr

∫

ω̃3, Tr
∫

ω̃2ω0 and Tr
∫

ω̃ω2
0 (3–, 2–, and 1–valent

respectively). After separation of cohomology and restriction on Lagrangian sub-
manifold de Rahm operator became invertible. So the propagator in this theory is
(d|ω̃)−1 (for simplicity we will denote it further as d−1).

Allocation of a Lagrangian manifold depends on metric. Thus d−1 depends on

metric. In fact, d−1 =
d∗

∆ |ω̃
.

Define a kernel of d−1 as

(d−1J)a(x) =

∫

My

Ga
b (x, y) ∧ Jb(y) . (5)

Here a, b are algebraic indices.

From the definition we see that G ∈ Ωd−1(M ×M, g ⊗ g∗).

For diagrams’ calculation we will use point–splitting regularization. This means,

that Gε(x, y) =

{

0 , ρ(x, y) ≤ ε ,

G(x, y) , ρ(x, y) > ε .
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5 3−dimensional Chern−Simons theory as a particular case of

ω−theory

Let’s consider the case, when d = 3. Puting ω0 = 0 and restricting on the
Lagrangian submanifold, we can rewrite ω in the following form:

ω̃ = c + A + ∗db . (6)

Here two fermion fields c and b (which are also a 0–forms) give us ω̃(0) (= c) and
ω̃(1) (=∗db). Boson 1–form A, which satisfies the condition d∗A = 0, is just a ω̃(1).
d∗ω̃(4) = 0→ ω̃(4) = 0. So we can rewrite action in explicit form:

S(ω) = Tr

∫

M3

A dA + 2c d ∗ db +
2

3
A3 + 2cA ∗ db . (7)

But this is just a BRST–fixed action of Chern–Simons theory in Lorentz gauge.
Thus this theories coincide up to the cohomologes.
It is well known, that Chern–Simons thoery is finite (see, for example [2]). Our

main statement that ω–theory is also finite.

6 Proof of finiteness

Here we don’t want to give a precise mathematical proof, but just give an idea,
how this proof works. This proof is somehow a generalization of known one for the
3–dimensional case [2].

Near the diagonal of M ×M (when x is close to y) we can introduce notations:
uµ ≡ xµ − yµ, ûµ ≡ uµ/||u||.

It can be shown, that our propagator near the diagonal can be represented in
the following way:

Ga
b (x, y) = δa

b εα1...αd

(

ûα1dûα2 . . . dûαdχ0 + ûα1dûα2 . . .dûαd−1χαd

1 +

+ûα1dûα2 . . .dûαd−2χαd−1αd

2 + . . . + ûα1dûα2 . . . χα3...αd

d−2

)

+ λa
b .

(8)

Here χ
αd−k+1...αd

k is a bounded k–form, λa
b is a bounded (d− 1)–form.

Let’s consider an arbitrary diagram with V vertexes. Vertexes are labelled with
coordinates x1, . . . , xV .

All divergences, which can arrive, come from the dû. Idiv(dû) = 1 (due to

dû ∼ du

u
).

Each diagram can be represented as a sum of terms of the following form:
∫

M1 . . .
∫

MV dûi1 . . . dûiσ
∧ (something bounded). iα is some index, which denote a

kind of û. The index of divergence of such term: Idiv(term) = σ − d(V − 1). We
are interested in the case, when it is bigger or equal to zero.

Let’s introduce a notation U = dûi1 . . . dûiσ
. From σ ≥ dV − d we obtain, that

codimension of U is not bigger than d.
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But we can find d + 1 linearly independent vector fields, which are annihilated
by U . This fields are

V
∑

i=1

∂

∂xµ
i

and

V
∑

i=1

xµ
i

∂

∂xµ
i

.

Thus U = 0.
So there is no terms which are potentially divergent.

7 Generalizations

In this prove we used the properties of the propagator near the diagonal and a
specific form of vertexes, namely that this vertexes are a wedge product of poly-
forms. So we can generalize obtained result in the following way:

This theorem works for provisional theory with propagator d−1:

– for arbitrary dimension (also for even d)

– for arbitrary vertex of the form Tr
∫

φ ∧ ω . . . ∧ ω, where φ is an external
parameter and ω is a polyform.

Another example of such theory is a BF–theory [4], action of which we can rewrite
as:

S = Tr

∫

Md

ω∗(dω + ω2) . (9)

Here d ∈ N; ω∗, ω ∈ Ω∗(Md, g); ε(ω) = 1,ε(ω∗) = d mod 2.
When d = 2, this theory is equivalent to the topological 2–dimensional Yang–

Mills.
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