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It’s well known, that the symmetries of a system of differential equations allow trans-
forming its solutions to solutions of this system. Using this property, from two known
solutions of the theory of plasticity: the solution of Nadai for circular cavity stressed by
normal and shear pressure, and Prandtl’s solution for a block compressed between per-
fectly rough plates, there were constructed new analytical exact solutions of the system
of two–dimensional ideal plasticity equations.
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1 Introduction

The symmetry analysis of differential equations has many applications in an
investigation of a systems of partial differential equations (PDEs). With a help of a
group of symmetries it’s possible to obtain some information about initial structure
of PDEs, it allows to construct invariant and some others classes of exact solutions,
to classify PDEs by admitting groups and so on ([1] – [8]). The main property of
symmetry admitting by the system of PDEs, is that under its action any solution
of the system is moved to the solution of this system. Using this property one can
construct a new solutions without integrating of the given system, only by means
of group transformations under known solutions. In such a way, for example, some
interesting results were obtained in [5] for Kadomtsev–Pogutse equations. Note,
that this way is effective one only if we have a sufficiently rich group of point
transformations.

From exact solutions one can construct a family of so-called S–solutions, i.e
obtained by means of symmetries. This family of S–solutions depends of the group
parameter a, if a = 0 then we have an initial solution. This procedure is called
the ”reproduction” [6] or the ”evolution” of solutions. Sometime it’s possible to
construct the general solution of equations from particular one only by means of
point transformations, and new S–solutions are satisfying to a new boundary–value
conditions.

The classical system of the plane ideal plasticity is investigated during a many
years but there are a few of its exact solutions: the Prandtl’s solution; the solution
for a cavity of circular form, stressed by uniform pressure; the solution of Nadai for
the stresses in the plastic region round a circular cavity loaded by a constant shear
stress in addition to a uniform pressure; and the spiral–symmetrical solution [7].
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In [8] there were constructed the analytical solutions for some boundary problems.
All these solutions are widely used for a testing of a numerical calculations, allow
to estimate an assurance factor of some constructions and so on. Therefore we can
say that there is a lack of exact solutions of the system under consideration.

The plan of the paper is as follows. In the section 2 we give briefly some
basic definitions and statements of the theory of point transformations and some
known results for the system of plane ideal plasticity, which are necessary for the
construction of a new exact solutions.

In the section 3 we deduce S–solution from the solution of Nadai for plastic state
round a circular cavity. As the result, the obtained family of new solutions allows
describing the extension of a cavities of different forms, in particular, a cavity of
the form of limacon of Pascal.

In the section 4 Prandtl’s solution was transformed. As result we obtained a
lot of exact solutions. We selected only restricted ones along Oy–axis and these
solutions can be used for the solving of boundary–value problems for compression
of a blocks by rough parallel plates. We can hope, that with the help of these
S–solutions it will be possible to describe not only compression of the thin blocks,
but the thick ones too.

2 Point transformations

Let give some informal concepts, for more precise definitions see for example
[1]. Let’s consider a system of PDEs with two unknown functions u = u(x, y),
v = v(x, y):

F1(x, y, u, v) = 0 , F2(x, y, u, v) = 0 .

We can say, that this system admits a symmetry or an one–parameter group G of
point transformations:

x′ = f1(x, y, u, v, a) , f1|a=0 = x , y′ = f2(x, y, u, v, a) , f2|a=0 = y ,

u′ = g1(x, y, u, v, a) , g1|a=0 = u , v′ = g2(x, y, u, v, a) , g2|a=0 = v ,

if the given system of PDEs has the same form for the new variables x′, y′, u′, v′.
An infinitesimal operator

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ η1

∂

∂u
+ η2

∂

∂v

corresponds to the point transformations if its coordinates are satisfying to the Lie
equations

dx′

da
= ξ1 , x′|a=0 = x ,

dy′

da
= ξ2 , y′|a=0 = y ,

du′

da
= η1 , u′|a=0 = u ,

dv′

da
= η2 , v′|a=0 = v .

2



The evolution of solutions of plane ideal plasticity

So, under admitting point transformations any solution of the initial system of
PDEs u = u(x, y), v = v(x, y) is moved to the solution of the form u′ = u′(x′, y′),
v′ = v′(x′, y′) which we can name as S–solution.

Let’s consider the classic system of plane ideal plasticity with von Mises’ crite-
rion [9]:

∂σx

∂x
+

∂τxy

∂y
= 0 ,

∂τxy

∂x
+

∂σy

∂y
= 0 ,

(σx − σy)2 + 4τ2
xy = 4k2 ,

(1)

where σx, σy, τxy are components of a stress tensor, k is a constant of plasticity.
By means of changing of variables

σx = σ − k sin 2θ ,

σy = σ + k sin 2θ ,

τxy = k cos 2θ

the system (1) is reduced to

∂σ

∂x
− 2k

(

∂θ

∂x
cos 2θ +

∂θ

∂y
sin 2θ

)

= 0 ,

∂σ

∂y
− 2k

(

∂θ

∂x
sin 2θ − ∂θ

∂y
cos 2θ

)

= 0 ,

(2)

where σ is a hydrostatic pressure, θ + π/4 is the angle between the first principal
direction of a stress tensor and the Ox–axis.

It’s known [3], that the system (2) admits the infinite group of symmetries. Its
subgroup of point transformations is formed by following generators:

X1 = ∂x , X2 = ∂y , X3 = x∂x + y∂y ,

X4 = −x∂y + y∂x + ∂θ , X5 = ∂σ ,

X6 = ξ1∂x + ξ2∂y + 4kθ∂σ − σ

k
∂θ ,

X = ξ∂x + η∂y ,

(3)

where

ξ1 = −x cos 2θ − y sin 2θ − y
σ

k
, ξ2 = y cos 2θ − x sin 2θ + x

σ

k
,

and (ξ, η) is an arbitrary solution of the following lineal system of equations:

∂ξ

∂θ
− 2k

(

∂ξ

∂σ
cos 2θ +

∂η

∂σ
sin 2θ

)

= 0 ,

∂η

∂θ
− 2k

(

∂ξ

∂σ
sin 2θ − ∂η

∂σ
cos 2θ

)

= 0 .

(4)
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Transformations, which are corresponded for any generator of (3), convert the sys-
tem (2) to itself. Thus, for the generator X we have transformations of independent
variables:

x′ = x + aξ , y′ = y + aη , (5)

where a is an arbitrary sufficiently small parameter, (ξ, η) is an arbitrary solution
of (4). Because of X is admitting generator, hence any solution of the system (2) is
transformed to the solution of this system under the action of transformations (5).
Note, that we’ve shown the variables that are changing under this transformation,
other variables are omitted.

3 Reproduction of solution for a circular cavity

The system (1) in polar co-ordinates (r, φ) has the form

∂σr

∂r
+

1

r

∂τrφ

∂φ
+

σr − σφ

r
= 0 ,

∂τrφ

∂r
+

1

r

∂σφ

∂φ
+

2τrφ

r
= 0 ,

(σr − σφ)2 + 4τ2

rφ = 4k2 .

(6)

Let’s consider the solution of Nadai [9]

σr

σφ

}

= −p + k ln
r2 +

√
r4 − m2R4

R2(1 +
√

1 − m2)
+ k

(

√

1 − m2 ∓ 1

r2

√

r4 − m2R4

)

,

τrφ = km
R2

r2
, m =

t

k
.

(7)

This solution describes a plastic state round a circular cavity of radius R, situated
in an infinite medium loaded by uniformly distributed pressure p, and tangent stress
τrφ is equal to t:

σr

∣

∣

r=R
= −p , τrφ

∣

∣

r=R
= t .

In cartesian system of co-ordinates this solution has the form:

θ(x, y) = arctan
y

x
+

1

2
arccos

mR2

x2 + y2
,

σ(x, y) = −p + k ln
x2 + y2 +

√

(x2 + y2)2 − m2R4

R2(1 +
√

1 − m2)
+ k

√

1 − m2 .

(8)

Let’s take the solution of the system (4) in the form

ξ = ασ + k(α sin 2θ − β cos 2θ) + C1 ,

η = βσ − k(α cos 2θ + β sin 2θ) + C2 .
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For a simplicity, let α = 1, β = 0, C1 = p, C2 = 0:

ξ = σ + k sin 2θ + p ,

η = −k cos 2θ ,
(9)

then transformations (5) will take the form:

x′ = x + a(σ + k sin 2θ + p) ,

y′ = y − ak cos 2θ .
(10)

So, in this case, S–solution obtained from (8) will have the form θ = θ(x′, y′),
σ = σ(x′, y′).

In important practical problems, when the tangent stress τrφ is equal to zero:

σr

∣

∣

r=R
= −p , τrφ

∣

∣

r=R
= t = 0 .

the solution of Nadai (7) has the form

σr = −p + 2k ln
r

R
,

σφ = −p + 2k
(

1 + ln
r

R

)

, (11)

τrφ = 0 .

In cartesian system of co-ordinates solution (11) is the following:

θ = arctan
y

x
+

π

4
,

σ = −p + k + k ln
x2 + y2

R2
.

(12)

Using (10) and the first equation of (12) we can write

cos 2θ = − 2x′y′

x′2 + y′2
= −2

(x + a(σ + k sin 2θ + p))(y − ak cos 2θ)

(x + a(σ + k sin 2θ + p))2 + (y − ak cos 2θ)2
,

sin 2θ =
x′2 − y′2

x′2 + y′2
=

(x + a(σ + k sin 2θ + p))2 − (y − ak cos 2θ)2

(x + a(σ + k sin 2θ + p))2 + (y − ak cos 2θ)2
.

Resolving the ultimate system with respect to cos 2θ, sin 2θ we obtain:

cos 2θ = −2
y(x + a(σ + p − k))

(x + a(σ + p − k))2 + y2
,

sin 2θ =
(x + a(σ + p − k))2 − y2

(x + a(σ + p − k))2 + y2
.

In order to obtain S–solution, we have to substitute transformed variables x′, y′ to
the solution (12). Therefore, taking into account (10), the function θ will take the
form:

θ = arctan
y′

x′
+

π

4
= arctan

y

x + a(σ + p − k)
+

π

4
. (13)
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For the function σ from the second expression of (12) we obtain:

σ = −p + k − k ln R2 + k ln

[

y2 + (x + a(σ + p))2 − a2k2
]2

y2 + (x + a(σ + p − k))2
. (14)

The S–solution (13), (14) in the polar system of co-ordinates has the form

θ = arctan
r sin φ

r cosφ + a(σ + p − k)
+

π

4
,

σ = −p + k − k ln R2 + (15)

+k ln

[

r2 + 2ar(σ + p) cosφ + a2((σ + p)2 − k2)
]2

r2 + 2ar(σ + p − k) cosφ + a2(σ + p − k)2
.

The S–solution (15) describes plastic state round a cavity of the form r = R −
2ak cosφ (i.e. a form of limacon of Pascal), with boundary conditions:

σ
∣

∣

r=R−2ak cos φ
= −p + k , θ

∣

∣

r=R−2ak cos φ
= φ + π/4 ,

where a is an arbitrary parameter. From a mechanical sense the value of parameter
R should be more or equal to 2ak. If a = 0, then we have the initial solution (12).
If instead of (9) we’ll take other solution of the system (4) with other values of α,
β, C1, C2, then we’ll obtain different forms of limacon of Pascal for cavities.

4 Reproduction of Prandtl’s solution

Let’s write the Prandtl’s solution [9] of the system (2) in the form

σ = −kx + k
√

1 − y2 , 2θ = arccosy . (16)

The equations of the corresponding families of slip lines are the following:

x = −2θ + sin 2θ + K1 , y = cos 2θ ,

x = 2θ + sin 2θ + K2 , y = cos 2θ .

Under the transformations (5), the Prandtl’s solution will transform to the following
one:

σ = −kx + k sin 2θ + akξ , y = cos 2θ + aη , (17)

and the slip lines will have the form:

x = ∓2θ + aξ + sin 2θ + Ki , y = cos 2θ + aη , i = 1, 2 .

Therefore, in order to obtain new solutions, we have to find out some solutions of
the system (4),which we can seek in the forms:

ξ = ασ + F (θ) , η = βσ + G(θ) ; (18)

ξ = f(θ) exp
( σ

2k

)

, η = g(θ) exp
( σ

2k

)

; (19)

ξ = α(θ) sin
σ

2k
+ β(θ) cos

σ

2k
, η = F (θ) sin

σ

2k
+ G(θ) cos

σ

2k
; (20)

ξ = α(θ) sinh
σ

2k
+ β(θ) cosh

σ

2k
, η = F (θ) sinh

σ

2k
+ G(θ) cosh

σ

2k
, (21)
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where functions f , g, α, β, F , G are determined as a solution of corresponding
systems of ODEs.

It’s easy to see, that under the transformation (18) the Prandtl’s solution is
moved to the solution of the same form (there is no new solution). Under the
transformations (19), (21) the solution will be transform to the no restricted one
along the Oy–axis, hence we don’t consider solutions of this form.

Let’s consider the action of ultimate transformation (20) to the slip lines. Substi-
tuting (20) to the system (4) we obtain the system of equations for a determination
of functions α, β, F , G

α′ + β cos 2θ + G sin 2θ = 0 , β′ − α cos 2θ − F sin 2θ = 0 ,

F ′ + β sin 2θ − G cos 2θ = 0 , G′ − α sin 2θ + F cos 2θ = 0 .
(22)

Let’s derive each of the equations (22) with respect to θ. Then, according to (22),
we obtain the equations:

α′′ + α + 2F ′ = 0 , F ′′ + F − 2α′ = 0 ,

β′′ + β + 2G′ = 0 , G′′ + G − 2β′ = 0 .
(23)

The real solution for α, F has the form

α = C1 cos(1 ±
√

2)θ − C2 sin(1 ±
√

2)θ ,

F = C1 sin(1 ±
√

2)θ + C2 cos(1 ±
√

2)θ ,

where C1, C2 are arbitrary constants.
Then, solution for β, G of the second system (23), according to (22) will take

the form:

β = (1 ±
√

2)
(

C2 cos(1 ∓
√

2)θ − C1 sin(1 ∓
√

2)θ
)

,

G = (1 ±
√

2)
(

C2 sin(1 ∓
√

2)θ + C1 cos(1 ∓
√

2)θ
)

.

For a simplicity let’s C1 = 1, C2 = 0, and let take the lower sign, then (20) we can
write down in the form:

ξ = cos (1 −
√

2)θ sin
σ

2k
− (1 −

√
2) sin (1 +

√
2)θ cos

σ

2k
,

η = sin (1 −
√

2)θ sin
σ

2k
+ (1 −

√
2) cos (1 +

√
2)θ cos

σ

2k
.

The transformations of the slip lines can be written as follows:

x = ∓2θ + a
[

cos (1 −
√

2)θ sin(±θ + ci) −

−(1 −
√

2) sin (1 +
√

2)θ cos(±θ + ci)
]

+ sin 2θ + Ki ,

y = cos 2θ + a
[

sin (1 −
√

2)θ sin(±θ + ci) +

+(1 −
√

2) cos (1 +
√

2)θ cos(±θ + ci)
]

, i = 1, 2 . (24)
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From relations (24) it’s follow that new solution has restricted slip–lines, and we
can use these solutions for description of plastic flow of block compressed by two
rough plates.

With the increment of parameter a the thickness of block increases and becomes
approximately equal to 2(h + a), where h is a thickness of the initial block. The
new S–solution obtained from the Prandtl’s solution (16) by means of symmetry
transformations (5), has the form:

σ = −kx + a
[

cos (1 −
√

2)θ sin
σ

2k
− (1 −

√
2) sin (1 +

√
2)θ cos

σ

2k

]

+ k
√

1 − y2 ,

y = cos 2θ + a
[

sin (1 −
√

2)θ sin
σ

2k
+ (1 −

√
2) cos (1 +

√
2)θ cos

σ

2k

]

,

where a is an arbitrary parameter. For large values of parameter a we have a S–
solution far different from Prandtl’s solution. It can be used for analysis of plastic
flows for thick compressed block.
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