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1 Introduction

When we return to the early stages of development of quantum mechanics we
reveal that the fascination of its authors by their new discoveries must have been
enormous. Suddenly, they were able to resolve many old and tough puzzles like the
“incomprehensible” and mysterious stability of atoms with respect to an expected
steady radiation of their moving electrons. Under the name of PT –symmetry [1],
perhaps, we might easily be witnessing a certain continuation of these discoveries
in the nearest future.

As we all know, the “trick” of the founders of quantum mechanics was virtu-
ally elementary and consisted in a suitable replacement of any classical observable
quantity by an appropriate essentially self-adjoint operator in Hilbert space H (i.e.,
Hamiltonian H = H† for the energy, etc). Unfortunately, during the subsequent
applications of quantum mechanics, a few paradoxes emerged in the early forties,
especially in connection with relativistic problems (cf., e.g., the “Dirac’s see” [2]),
representing an important practical limitation of the whole trick, and hinting that
the “realistic” Hamiltonians might be non-Hermitian.

This discovery forced the phenomenologically oriented physics community to
forget about the optimism and ambitions of the early thirties. Theoreticians stam-
peded towards “certainties” offered by the half–explored territory of relativistic
quantum field theory. Such a controversial situation seems to have survived more
than half a century and, admittedly, it forms also an important part of what we
are going to discuss.

In a way inspired by the pioneering letter [1] we believe that the generic quanti-
zation recipe may be perceived as only too much innovation–resistent. Thus, we are
going to review here a few aspects of the Bender’s and Boettcher’s generalization
of the quantization recipe and of some of its particular applications in the context
of (super)symmetries.

Perhaps, our supplementary motivation lies in the observation that in its time,
the very idea of the quantization was truly revolutionary. Still, it arose a wave
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of protests among conservative physicists of all professional qualities (let us just
mention their most famous EPR branch [3]). Hopefully, the similar protests against
PT –symmetry, however existing [4], will prove much less resistent, the more so after
the emergence of its defenses and reviews like the one which follows.

2 Why PT −symmetry?

Only towards the end of the second millennium, Carl Bender dared to return
from field theory to quantum mechanics and formulated his (nowadays, almost
famous) “but wait a minute!” project [5] where, basically, he advocated the necessity
of a tentative weakening of the (mathematically “unnecessarily strong”) Hermiticity
requirement for the observables. In the influential letter [1], this type of “heresy”
was formulated as inspired by discussions with their predecessors and colleagues. In
a broader historical perspective, its implicit origins may be traced back to several
independent formal studies and/or isolated comments reflecting needs of several
branches of phenomenological physics and occurring (or rather “lost”, here and
there) in the more mathematically oriented literature concerning, mostly, certain
peculiar non-Hermitian anharmonic oscillators with real spectra [6].

It is worth noting at this point that the same idea appeared, independently,
a couple of years sooner, in the fully separate contexts of nuclear physics (under
the name of quasi–Hermiticity [7]) and in a few other contexts mentioned in [1].
Concerning the present state of art, interested reader may generate easily a com-
paratively complete set of relevant citations when looking in the proceedings of the
(up to now, two) dedicated international conferences [8].

There is probably not yet time for an adequate and critical evaluation of the
resulting new (though not yet ripe enough) formulation of the innovated, so called
PT –symmetric [1, 9] (or, if you wish, quasi–Hermitian [7]) or QPT –symmetric
[10] or pseudo–Hermitian [11] or CPT –symmetric [12, 13]) quantum mechanics. I
may only note that the use of all these nicknames for the same theory is, by my
own opinion, redundant. That’s why I am sticking to the Bender’s terminology
(PT –symmetric quantum mechanics, PTQM), understanding that P and T need
not necessarily mean just the parity and time reversal, respectively.

In particular, T is to be read as an abbreviation for the more rigorous mathe-
matical requirement of “being essentially self-adjoint in H” [14], so that the time–
reversal symmetry (i.e., the commutativity of the Hamiltonian with the antilinear
operator T ) might find one of its most frequent applications in the very formal
definition of the standard Hermitian–conjugation mapping, T HT ≡ H†.

2.1 A brief recollection of a few much older relevant works

In the previous paragraph, we may pre-multiply operator T by an indefinite involu-
tion P and arrive at the explicit definition of the PT –symmetry. All the generalized
non-involutory and non-diagonal though, necessarily, non-singular and essentially
self-adjoint [7] forms of our P are also admissible and one thus returns just to the
old Dirac’s works [15] with his pseudo–metric η simply replaced by P .
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In this spirit, the above-mentioned retreat to field theory was a pure misunder-
standings. Everybody knows that this theory (with all its infinitely many degrees
of freedom and infinitely large renormalizations etc) represents a not too user–
friendly key to our understanding of microscopic systems. Curiously enough, even
the Dirac, see problem itself, expelled carefully from before the door of quantum
mechanics (and, formally, reducible to an indefiniteness of the “physical” Dirac’s
pseudo–metric η in the full Hilbert space) returned through the window of field the-
ory. It keeps living there, e.g., as a lasting difficulty with ghosts (cf. the Pauli’s and
Gupta’s and Bleuler’s studies [16] and the Lie–Wick’s and Nakanishi’s discussions
[17] or their recent revitalization [18]).

3 How can we survive with indefinite metric?

Once the rule H†η = ηH of the pseudo–Hermiticity with a Hermitian “Hilbert–
space–metric–operator” η = η† 6= ηtraditional = I becomes needed in field theory,
it is possible to say that “the appearance of negative probability is the greatest
problem in the indefinite metric theory” while “the great physicists proposed wrong
resolution of it” [19]. A key to the solution of this problem has been offered, very
recently, by Ali Mostafazadeh [11] who paid very detailed attention to one of the
most common and physical PT –symmetric models, see to Klein–Gordon equation
in its Feshbach–Villars form [20]. He imagined that every given and fixed PT –
symmetric Hamiltonian operator H may, in general, satisfy the necessary pseudo–
Hermiticity intertwining rule with many different pseudo–metrics ηm. This simple
idea (revealed, independently and practically in parallel, by several groups of other
authors [7, 12, 21]) initiated a new wave of development of the theory because some
of the new metrics may be positive (i.e., η = η+ > 0 in the notation of ref. [11]).

The first step of all the applications of the new theory should lie, therefore, in
a carefully explained transition from the “simple” or “initial” indefinite metric (let
us call it P) to the “correct” or rather “physical” alternative metric η+ > 0.

A compact denotation η+ ≡ CP used in ref. [12] looks to the present author
as one of the best conventions on the market, with one of his reasons being that
the “charge” operator C coincides with his own (and still older) quasi–parity Q (cf.
[22] dating back to 1999). An even older paper by Scholtz, Geyer and Hahne [7]
should be still more decisively recalled as another recommended reading. In this
reference, the positive η+ 6= I were also already known and studied and the related
H (be it Hermitian or not in the usual sense) has been called quasi–Hermitian (this
means Hermitian in the nontrivial, non-isotropic metric CP) there.

In such a context, the ghosts of the field theories [23] emerge as defined as states
with the vanishing pseudo–norm defined with respect to the indefinite metric (i.e.,
pseudo–metric) P . One may then understand the S–matrix as an operator which is
unitary in the sense of the indefinite metric [24]. It is not genuinely unitary because
the norm positivity is not guaranteed with respect to P [19]. Still, after the change
of the metric (i.e., after the re-construction of the Hamiltonian–dependent quasi–
Hermiticity by a re-definition of the inner product with respect to the positively
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definite metric CP) the physical appearance of the negative–norm states becomes
forbidden.

Now, our key message may be formulated as a statement that the physical
interpretation of the ghosts need not necessarily proceed solely in the traditional
Gupta–Bleuler–like ghost–elimination spirit, i.e., in a way based on an appropriate
specification of the “physical subspace”. The original Hilbert space H need not
be necessarily declared overcomplete on the physical grounds, and some subsidiary
conditions need not necessarily be imposed.

Indeed, in the new metric CP (which is to be declared “correct and physical”
and which is, in principle, ambiguous and dynamically dependent on H), one can
alternatively get rid of the interpretation difficulties via the use of the new norm.

4 Why PT −symmetric supersymmetry?

4.1 Why supersymmetry at all?

One of the main motivations of the present text originates from the well known
key to the exactly solvable 1D models found in their supersymmetric (SUSY) re-
interpretation [25]. It is amusing to recollect that such an application of SUSY
emerged, historically speaking, as a quite unexpected byproduct of the originally
more ambitious supersymmetric quantum mechanics (SUSYQM) of Ed Witten.

We consider the latter formalism worth extending to the PT –symmetric world.
As long as the PT –symmetry property itself is not too dissimilar from its “Her-
miticity” predecessor H = H†, one may expect that an active use of PT –symmetric
models could be capable of altering the present status and the role of all the stan-
dard symmetries in general and of the supersymmetry in particular.

To set the scene, let us return to the sample linear parity operator P and to
an eigenvalue problem H |Ψ〉 = E |Ψ〉 with symmetry H P = P H . In the light of
Schur’s lemma this implies that every linear combination of |Ψ〉 and P |Ψ〉 will also
satisfy the same eigenvalue problem so that in the most common one–dimensional
and non-degenerate (= Sturm–Liouville) setting we may immediately classify all
the solutions |Ψ〉 according to their parity.

Once we move to the more sophisticated symmetries, the same procedure makes
our spectra multiply indexed. One of the most successful applications of such a
strategy may be undoubtedly found in the physics of elementary particles where the
symmetries of the interactions proved to be a powerful source of the classification
of the possible solutions (= particle multiplets).

Paradoxically enough, SUSY as a mathematically most natural transition to
the symmetries between the bosons and fermions (called, in mathematics, graded
algebras) failed in practice. No SUSY–partner element of any supermultiplet has
been found up to now. At the same time, the use of the first nontrivial graded Lie
algebra sl(1|1) proved extremely fruitful within SUSYQM. In Hermitian case, its
three ’graded’ generators (see Hamiltonian H and the two “supercharges Q and P

satisfying there the ’fermionic’ nilpotence rule PP = QQ = 0 plus a compatibility
commutation relations HP −PH = HQ−QH = 0) are described in detail, say, in
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review paper [25].

4.2 Why supersymmetry without Hermiticity?

An explicit sample of the modified SUSYQM in its various PT –symmetric versions
may be found among papers [26]. Probably the first application of such a non-
Hermitian quantum–mechanical SUSY formalism to the fully and exactly solvable
(spiked) harmonic oscillator may be found in ref. [27]. At this point it would be
useful to carbon–copy some formulae for illustration but we must skip such a plan
due to the absolute shortage of space for such a purpose.

In the middle of our very concise discussion of the subject, surviving without
the formulae, it is still necessary to emphasize that PT –symmetry is anti-linear
(i.e., non-linear) so that all the apparent Schur–type parallels with the ordinary
linear symmetries (and SUSY) will immediately break down [5]. Similar formal
challenges accelerated, after all, the very recent development of the field. I.a., it
has been found that a much easier access to many relevant structures immanent in
the majority of the “weakly Hermitian” PT –symmetric models (and, in particular,
to their specific spectral representations [21, 28] and/or to the existence of the very
specific, so called exceptional points in their spectra [29]) may be mediated by many
much more elementary models [30].

This further supported our interest in SUSY constructions in a way which ap-
plies, in particular, to the really exceptional exactly solvable harmonic oscillator
limit of virtually all of the above-mentioned peculiar anharmonic oscillators [22]. In
the same direction, the first successful steps have been made also towards the more–
particle PT –symmetric exactly–solvable models of the Calogero [31] or Winternitz
[32] types. In this context, many questions still remain open [33].

5 PT form of SUSY in application to Klein−Gordon equation

In an overall non-Hermitian setting, the SUSY Hamiltonian H becomes a direct
sum of its diagonal ’left’ and ’right’ Hamiltonian–type sub–operators H(L,R). In
the same two-by-two partitioned notation (cf. [25] for all details) both Q and P

are, respectively, lower and upper triangular two-by-two matrices. They contain
just one off-diagonal element (say, operators a and c, respectively). Of course,
the standard Hilbert–space representations of the latter a (annihilation operator)
and c (creation operator) are usually non-diagonal and may be often written in
the one–diagonal upper– and lower–triangular infinite–dimensional matrix form,
respectively.

In our recent paper [34] we asked what happens if one relaxes the standard
Hermiticity requirements. What we did in ref. [34] was, in essence, just a transfer
of the underlying SUSY–type factorization of the Hamiltonian to the domain of the
Klein–Gordon–type equations. Interested reader is recommended to search for the
explicit formulae in loc. cit..

Basically, we proceeded in full analogy with the non-relativistic case. Keeping
P equal to the (most elementary operator of) parity we recollected the standard
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procedure (seen as a source of interest in the imaginary cubic anharmonicities −ix3

in the late seventies) and assumed that any suitable preselected spatially symmetric
and real (read: T –symmetric) potential is made non-Hermitian and PT –symmetric
by adding another, purely imaginary and spatially antisymmetric component to it.
A deeper understanding of the similar models can already rely on the intensive
technical developments in the field. Thus, explicit constructions may be facilitated
by a recourse to the delta–expansion techniques of field theory [35] or to the WKB
[36] and strong–coupling [37] perturbation expansions or to the quasi–exact solution
techniques [38]. Last but not least, the use of the language of Bethe ansatz might
prove also an enormously efficient tool [39].

6 Conclusions

6.1 Practical use of PT −symmetry

We emphasized that once we accept the necessity of a Lorentz covariance of some
realistic dynamical equations in quantum setting, we arrive at one of the oldest,
most physical and most popular PTQM example representing the Klein–Gordon
version of the relativistic quantum mechanics in the form authored by Feshbach
and Villars in the middle of fifties [20], clarified to be consistent with the standard
postulates of quantum mechanics by Ali Mostafazadeh [40] and encountering an
unexpected resurrection in cosmology at present [41].

In this model, a successful combination of the Lie (= linear) symmetry with the
non-Hermiticity of the generator HFV of the time evolution exemplifies a specific
non-diagonal and two-by-two partitioned form of the indefinite metric P or η.

Classical representation theory did find a place for both the linear and antilinear
operators (cf. reviews of this topic [42]). The related analysis of the Lie–algebraic
background of the exact solvability of the one–dimensional Schrödinger equations
has been also recently extended to the case of the PT –symmetric models by Bagchi
and Quesne who revealed that a weakening of the Hermiticity requirement implies
that the solvable models will form a broader class exhibiting, i.a., an enrichment of
their symmetry algebras by complexifying the standard so(2, 1) to sl(2, C) [43].

In the Lie–algebraic setting, a particularly useful role seems to be played by the
particular Calogero–type models which mimic a realistic multiparticle dynamics in
one dimension. One might note that a suitable PT –symmetric complexification of
these models has been shown also to open a path towards a nonstandard limiting
transition to the entirely new solvable models [44].

6.2 PT −symmetry in combination with SUSY

It is rather amusing to note [45] that the 1998 letter [46] (which might be thought of
as one of the very first texts on PT –symmetry in SUSY systems) paid its attention
to only too many features of the problem at once so that, e.g., the exactly solvable
model it describes in its last chapter seems to be almost forgotten at present.

One of explanations is that both its second and third authors have already left
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physics completely. In contrast, its first author remains extremely active in the
field and should be acknowledged for having introduced the author of this lecture
in the field in 1999. Unfortunately, once this summary of my Prague’s lecture has a
very restricted number of pages, the lack of space forced me to skip virtually all the
technical details of my own papers, and the more so in the case of many relevant
and extremely interesting results produced, e.g., by F. Cannata and his co-authors
[47], by C. Quesne and her co-authors [48] etc.

6.3 Outlook

Let us summarize that when working simply with the two alternative metric oper-
ators, one of them may remain indeterminate. For the purely practical purposes it
is only necessary that its structure is “sufficiently simple” (typical examples: the
Bender’s parity P or the Feshbach–Villars’ σ3). The second metric should then be
constructed as positively definite, allowing us to define the norms of states. One
can hardly expect that the latter operator would be not too complicated.

What marks the progress in the whole theory of this type is the presentation
of several explicit examples of the desirable physical metrics. Besides the early
product QP (assigned to the exactly solvable PT –symmetric spiked harmonic os-
cillator in 1999 [22]), one should not forget the Ali Mostafazadeh’s alternative to
the Feshbach–Villars’ metric for the Klein–Gordon field [40] and, last but not least,
several fresh, beautiful and explicit constructions of the products CP obtained by
different sophisticated methods for several different field models by Carl Bender
and his co-authors [49].

On this background, the standard studies of SUSY models are also re-acquiring
a new motivation. The present review mentioned the few steps in this direction,
exhibiting already certain clear parallels between pseudo– and Hermitian SUSY.
By the present author’s opinion, these preliminary sample results just mark a very
start of a more intensive development of this subject in some very near future.
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