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We follow the definition of a functional integral as a limit of a sequence of the
finite dimensional integrals. This method has no problems with the definition of
integral measure, because for the finite dimensional integrals the integral measure
is defined correctly. Calculating the finite dimensional integrals we must solve the
problem of the calculation of one dimensional integrals

I1 =

∫ +∞

−∞

dx exp{−(ax4 + bx2 + cx)} , (1)

where Re a > 0. The conventional perturbative approach rely on a Taylor’s decom-
position of x4 term with consecutive replacements of the integration and summa-
tion order. These integrals can be calculated, but the sum is divergent. However,
I1 = I1(a, b, c) is an entire function for any complex values of b and c, since there
exist all integrals

∂n
c ∂m

b I1(a, b, c) = (−1)n+m

∫ +∞

−∞

dx x2m+n exp{−(ax4 + bx2 + cx)} .

Consequently, the power expansions of I1 = I1(a, b, c) in c and/or b has an infinite
radius of convergence (and in particular they are uniformly convergent on any
compact set of values of c and/or b). In what follows we shall use the power
expansion in c:

I1 =

∞
∑

n=0

(−c)n

n!

∫ +∞

−∞

dx xn exp{−(ax4 + bx2)} . (2)
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The integrals appearing here can be expressed in terms of the parabolic cylinder
function Dν(z), ν = −m−1/2, (see, for instance, [2]). For n odd, due to symmetry
of the integrand the integrals are zero while for even n = 2m we use:

D−m−1/2(z) =
e−z2/4

Γ(m + 1/2)

∫ ∞

0

dx xm−1/2 exp{− 1
2x2 − zx} . (3)

Explicitly, for the Eq.(2) we have:

I1 =
Γ(1/2)√

b

∞
∑

m=0

ξm

m!
D−m−1/2(z) , ξ =

c2

4b
, z =

b√
2a

, (4)

we have used the abbreviation:

D−m−1/2(z) = zm+1/2ez2/4 D−m−1/2(z) .

The sum (4) is convergent for any values of c, b and a positive [1].
Using such expansions we shall calculate the continuum unconditional measure

Wiener functional integral:

Z =

∫

[Dϕ(x)] exp(−S) ,

corresponding to the continuum action with the fourth order term:

S =

∫ β

0

dτ

[

c

2

(

∂ϕ(τ)

∂τ

)2

+ bϕ(τ)2 + aϕ(τ)4

]

. (5)

Following the standard procedure, we divide the integration interval into N equal
slices. We define the N -dimensional integral by the relation [3]:

ZN =

∫ +∞

−∞

N
∏

i=1





dϕi
√

2π4
c



 exp

{

−
N

∑

i=1

4
[

c

2

(

ϕi − ϕi−1

4

)2

+ bϕ2
i + aϕ4

i

]}

, (6)

where 4 = β/N . The continuum Wiener unconditional measure functional integral
is defined by the limit:

Z = lim
N→∞

ZN .

Applying to (6) the relation (3), we obtain, [1]:

ZN =
[

2π(1 + b42/c)
]−N−1

2
[

2π( 1
2 + b42/c)

]−1/2 SN (7)

with

SN =
∞
∑

k1,···,kN−1=0

N
∏

i=0

[

(ρ)
2ki

(2ki)!
Γ(ki−1 + ki + 1

2 )D−ki−1−ki−1/2 (z)

]

, (8)
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where k0 = kN = 0, ρ = (1+b42/c)−1, z = c(1+b42/c)/
√

2a43 and the argument

of the last term D−kN−1−1/2(zlast) is zlast = c( 1
2 +b42/c)/

√

2a43. It is worth while
to stress that the factor ρ is independent of the coupling constant. The coupling
constant dependence enters into this formula only through the argument z of D
functions.

The question of the convergence of the Eq.(8) is important. Let aki
is the ki

dependent part of the argument of the product in Eq.(8):

aki
=

(ρ)
2ki

(2ki)!
Γ(ki−1 + ki + 1

2 )D−ki−1−ki−1/2 (z) Γ(ki+1 + ki + 1
2 )D−ki+1−ki−1/2 (z) .

(9)
Using the asymptotic for parabolic cylinder functions and Stirling formula we prove
that aki

approaches to zero in the asymptotic region of ki as

kD
i F ki

ki! exp (
√

ki)
,

where D and F are finite numbers [1]. This asymptotic of aki
is sufficient for a

proof of the uniform convergence of the series not only for single ki in (8), but for
arbitrary tuple {ki} of indices. By the same method we can prove the uniform
convergence of the summation over two, three, . . . , N − 1 summation indices ki in
the equation (8). This important conclusion indicates, that in the formula for ZN

the (N − 1)-tuple summation over ki’s is convergent.
Following the idea of Gelfand and Yaglom the functional integral in the contin-

uum limit is defined by the relation

lim
N→∞

ZN =
1

√

F (β)
,

where F (β), for our case, is the solution of the differential equation [1]:

∂2

∂τ2
F (τ) + 4

∂

∂τ
F (τ)

∂

∂τ
ln S(τ) = F (τ)

(

2b

c
− 2

∂2

∂τ2
ln S(τ)

)

, (10)

calculated at the point β (the upper limit of the time interval in the action (5)).
Eq.(10) has to be supplemented by the initial conditions: F (0) = 1 and

∂F (τ)

∂τ

∣

∣

∣

∣

τ=0

= 0 .

The function S(τ) is given as the limit N → ∞ of SN given by (8).
The result of the summation (8) (replacing the N dimensional integration) is an

exact relation, calculated without any approximation. The multiple summations
suppress this advantage somewhat, therefore we shall discuss the ki summations in
the formula (8). The details of this calculations are presented in [1].
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These summations can be provided by the help of the asymptotic expansions of
the parabolic cylinder functions [2]:

ez2/4 zki+1/2 D−ki−1/2(z) =

J
∑

j=0

(−1)j
(ki + 1

2 )
2j

j! (2z2)j
, (11)

(J is fixed finite number, z is large), and the summation relation for the generating
function [2]:

ex2/4
∞
∑

k=0

(ν)
k

k!
tk D−ν−k(x) = e(x−t)2/4 D−ν(x − t) . (12)

The symbols (ki + 1
2 )

2j
and (ν)

k
are the Pochhamer’s numbers defined by:

(ν)
k

=
Γ(ν + k)

Γ(k)
.

In the summation over single ki in (8), corresponding to the summation over aki
in

(9), there appear a product of two D functions possessing as the function’s subscript
the summation index. We propose to use the asymptotic expansion for one of them.
The asymptotic formula can be used in summation over index ki provided that the
summation runs over finite number of the terms, and the index of the parabolic
cylinder function, and its argument obey the relation:

ki < N0 <| z | , (13)

N0 is an upper bound of summation variables in (8).
This requirement for an application the asymptotic formula is violated if the

summation index approaches infinity in (8). We can overcome this problem thank
to the uniform convergence of the summations in (8) proven in [1]. We truncate
the summation over ki in (8) but we demand that the partial sum is close to the
full infinite one. To minimize the effect of the truncation on the final result in the
continuum limit, we have to choose the maximal value of the index ki such that
the remainder of the sum (8) satisfies the inequality

∣

∣

∣

∣

∣

∞
∑

ki=N0+1

aki

∣

∣

∣

∣

∣

< ε(N) , (14)

with ε(N) approaching zero for large N so that N 3ε(N) → 0 in the limit N → ∞.
We have chosen the third power of N in the inequality in order to eliminate the
influence of remainders (14) in Gelfand–Yaglom procedure for the calculation of
continuum limit. We estimated the remainder (14) and shown that both conditions
(13) and (14) for the application of the proposed summation method are valid
simultaneously. In this estimate we utilized the asymptotic form of the parabolic
cylinder functions with double asymptotic properties proposed by N . Temme [5].
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The result of summations gives for (8) the following relation [1]:

ZN =

{

N
∏

i=0

[

2(1 + b42/c)ωi

]

}−1/2
J

∑

µ=0

(−1)µ

µ! (2z2)µ
(N)2µ,0 , (15)

with the symbols (N)2j,i satisfying the following recurrence relation:

(α + 1)2µ,p =

µ
∑

λ=0

(

µ
λ

)

ω−2(µ−λ)
α

2λ
∑

i=max[0,p−2(µ−λ)]

(

A2

ωα−1ωα

)i

(α)2λ,i a2(µ−λ)+i
p ,

(α = 1)2µ,p =
a2µ

p

ω2µ
0

, aj
i =

(

j
i

) ( 1
2 )

j

( 1
2 )

i

,

where

ωi = 1 − A2

ωi−1
,

A =
ρ

2
=

1

2(1 + b42/c)
,

ω0 = 1 − 1

2(1 + b42/c)
.

ZN in (15) is the N -th approximation of the functional integral. The continuum
limit of ZN we calculate by the procedure proposed by Gelfand–Yaglom following
the analogous steps as for the calculation of functional integral for the harmonic
oscillator [4]. This means, that for finite N we construct the difference equation
for (15), which in the continuum limit N → ∞ is reduced to differential equation.
The method and the solutions are discussed in [1], here we present the result only.

The function S(τ) entering differential equation (10) is calculated by:

S(τ) = lim
4→0

J
∑

µ=0

(−1)µ

µ! (2z243)µ

(

43µ(N)2µ, 0

)

,

with the expansion factor
1

(2z243)µ
=

(aρ

c2

)µ

finite in such limit. The additional power 43µ certifies that in the relation for
(N)2µ,0 only the leading terms in powers of 1/4 survive the continuum limit.

Equation (10) can be simplified by the substitution

F (τ) =
y(τ)

S2(τ)
.

For y(τ) we find the equation

∂2

∂τ2
y(τ) = y(τ)

[

2b

c
+

(

∂

∂τ
ln S2(τ)

)2
]

, (16)
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accompanied by the initial conditions

y(0) = S2(0) ,

∂

∂τ
y(0) =

∂

∂τ
S2(τ)

∣

∣

∣

∣

τ=0

.
(17)

The evaluation of function S(τ) is not yet finished. We present the result,
related to the usual perturbative expansion, to the lowest order terms in power
expansion in the variable a. Up to the term linear in coupling constant a we have
found [1]:

S(1)(τ) = lim
4→0

1
∑

µ=0

(−1)µ

µ! (2z2)µ
(N)2µ,0 =

= 1 −
( 1
2 )

2

2

a

4c2γ3

{

tanh(τγ) + τγ
[

3 tanh2(τγ) − 1
]

}

,

where γ =
√

2b/c.
We see, that for b > 0 in the harmonic oscillator limit, (i.e. a = 0 implying

S(1)(τ) ≡ 1), Eqs. (10, 16) reduce to Gelfand–Yaglom equation for the harmonic
oscillator. We find that in lowest nontrivial order in a the Eq. (16) is of the
modified Bessel type one. Then the functional integral can be expressed in term of
the modified Bessel functions.

Inserting the asymptotical perturbative expansion S(1)(τ) into equation (16), we
calculate functional integral beyond simple perturbative expansion. We can render
our result as a partial resumation of the simple perturbative series. Moreover, this
procedure allows the parameter b take both positive (anharmonic oscillator case)
and negative (Higgs case). A similar procedure is familiar in the renormalization
group calculations proposed by Gell-Mann and Low. In Callan–Symanzik equation
for running coupling constant the β function is calculated perturbatively, however,
the equation is solved non-perturbatively.
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