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1 Introduction and result

The aim of this note is to make a survey of our mathematical rigorous result
[12] on a path integral representation of the Green’s function for the radial Dirac
operator, and also to discuss a problem beyond that on the Yukawa2 quantum field
theory.

Consider the radial Dirac equation (e.g. [24, 25]) for a C2-valued function
u(r, t) = t(u1(r, t), u2(r, t))

∂

∂t
u(r, t) = −i[τ̃k + V (r)]u(r, t) , (r, t) ∈ R+ ×R , (1)

with potential V = V (r) being a real-valued function in r ∈ R+ = (0,∞). The
operator τ̃k is the free radial Dirac operator with mass m, acting on the Hilbert
space L2(R+, dr) ⊗C2 of the square-integrable C2-valued functions of r > 0 with
respect to the Lebesgue measure dr:

τ̃k = −iσ2
∂

∂r
− σ1

k

r
+mσ3 =

(
0 −1
1 0

)
∂

∂r
+

(
m −k/r
−k/r −m

)

with the Pauli matrices σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. We

are using the natural units ~ = c = 1 for Planck’s constant h divided by 2π and
the speed of light.

However, to simplify our argument, let us consider its unitary equivalent

τk = iσ3
∂

∂r
− σ1

k

r
+mσ2 = i

(
1 0
0 −1

)
∂

∂r
+

(
0 −k/r − im

−k/r + im 0

)

. (2)

Indeed there exists a unitary 2 × 2-matrix N such that Nσ2N
−1 = −σ3 and

Nσ1N
−1 = σ1.

∗) E-mail: ichinose@kenroku.kanazawa-u.ac.jp
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The free radial Dirac operator arises from the spin-angular momentum decompo-
sition of the free Dirac operator in 3-space dimensions. The nonzero integer k
(= ±1,±2, . . .) represents an eigenvalue of the “spin-orbit operator”.

In [8, 9, 15], for the 1-space-dimensional Dirac equation

∂

∂t
ψ(x, t) = −

[

α
∂

∂x
+ imβ + V (x)

]

ψ(x, t) , (x, t) ∈ R×R ,

we have constructed a countably additive path space measure on the space of
Lipschitz-continuous zigzag paths to give a path integral representation for its prop-
agator. One of the decisive reasons why this is possible is that the fundamental
solution exp

[
−(α∂x + imβ)

]
(x, y) of the 1-dimensional free equation is a ditribu-

tion of order zero in (x, y) ∈ R × R, or in other words, the Cauchy problem is
L∞ well-posed. The result has been refined in [9, 17, 18] and finally in [10]. Some
related works were also done in the meanwhile in [2, 4, 5, 20, 26, 6] and others.

Recently, in [13], we have, for the radial Dirac equation, explicitly computed the
propagator, i.e. the integral kernel Kt(r, ρ) of e−itτk for k = 1, but, showed that,
though it turns out to be a distribution of order zero in (r, ρ) ∈ R+ ×R+, there
exists no countably additive path space measure to represent the propagator for the
radial Dirac equation (1) because the free radial Dirac operator has a singularity
at r = 0 in its coefficients.

In this note we give a mathematical rigorous construction of a countably additive
path space measure to represent, though not the propagator, the Green’s function
for the radial Dirac equation (1) with τk in (2) in place of τ̃k .

The idea is to combine our method of constructing a path space measure for
the 1-dimensional Dirac equation in [8, 9, 15, 16, 17, 18], in particular, in [10] with
the following simple/intriguing procedure of dealing with singularity to perform
space-time transformation in path integrals used by physicists ([3, 21, 19], c.f. [7]):

1

A+B
= b

1

a(A+B)b
a =

∫ ∞

0

be−t[a(A+B)b]a dt . (3)

Here we are expecting the dt-integral on the right to vanish at infinity. The operator
τk has a singularity at r = 0 as in (2). However, multiply τk by some functions
a(r), b(r) ≥ 0 from the left and right sides, then a(r)τkb(r) becomes no more
singular.

Let us take a(r) = b(r) = r1/2. Then

r1/2τkr
1/2 = iσ3r

1/2 ∂

∂r
r1/2 + (−kσ1 +mrσ2) =

= i

(
1 0
0 −1

)

r1/2 ∂

∂r
r1/2 +

(
0 −k − imr

−k + imr 0

)

.
(4)

For potentials V (r), we assume that V (r) =
e

r
+W (r) with a real constant e

satisfying |e| ≤
√

k2 − 1
4 , and W (r) is L2

loc in R+ being bounded near r = 0. Note

this class of real-valued functions V (r) contains the Coulomb potential.
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We can show that the radial Dirac operator τk + V is essentially selfadjoint
on C∞

0 (R+) ⊗C2; its unique selfadjoint extension in L2(R+, dr) ⊗C2 has a real
spectrum. It can be also shown that the relevant operator r1/2(τk + V )r1/2 is
essentially selfadjoint on C∞

0 (R+)⊗C2, which is a non-trivial result.

Since r1/2τkr
1/2 has no more singularity at r = 0, so that e−it[r1/2(τk+V )r1/2]

behaves better near r = 0 than e−it(τk+V ), we can expect to construct a path space

measure associated with the semigroup e−it[r1/2(τk+V )r1/2]. Then the resolvent of
τk + V is, by the Laplace transform of this semigroup like (3), formally expressed
(with a suitable λ ∈ C) as

(τk + V − λ)−1(r, ρ) = r1/2
[(
r1/2(τk + V − λ)r1/2

)−1
]

(r, ρ)ρ1/2 =

= i

∫ ∞

0

r1/2 exp
[

−it(r1/2(τk + V − λ)r1/2)
]

ρ1/2 dt .

This may give a path integral representation of the resolvent kernel/Green’s func-
tion for the original radial Dirac operator τk +V (r), though we could not find such
a representation for the propagator e−it(τk+V ) itself.

We introduce the following notations. If C2 and (C2)′ are, respectively, the
space of the column 2-vectors and the space of the row 2-vectors, the space of
the 2 × 2 complex matrices M can be written as M2(C) = C2 ⊗ (C2)′. With

R+ = [0,∞), C∞
00 (R+

2
) ⊗M2(C) denotes the locally convex space of the M2(C)-

valued C∞ functions M(r, ρ) in R+2, which have compact support and satisfy
∂m+n

∂rm∂ρn M(r, ρ) = 0 at r = 0 or ρ = 0 for all m, n ≥ 0. Let C∞
00 (R+

2
)′ ⊗M2(C)

be its dual space. As C∞
0 (R+2

) ⊗M2(C) is a subspace of C∞
00 (R+

2
) ⊗M2(C),

so C∞
00 (R+

2
)′ ⊗M2(C) is a subspace of D′(R+2

) ⊗M2(C) of the M2(C)-valued

distributions in R+2
. By (·, ·) and 〈·, ·〉 we denote, respectively, the sesquilinear

and bilinear inner products between a dual pairing.
We can show the following path integral representation for the resolvent [(τk +

V ∓ iε)−1](r, ρ) for the radial Dirac operator τk + V (r), ε > 0. We denote by |0, t|
the interval 0 ≤ s ≤ t or 0 ≥ s ≥ t according as t > 0 or t < 0.

Theorem. Let V (r) be a potential mentioned above. Then:

(i) there exists a C∞
00 (R+

2
)′ ⊗M2(C) (2× 2-matrix distribution)-valued, countably

additive path space measure µt,0 on the space C(|0, t| → R+) of the continuous

paths R : |0, t| → R+ such that the resolvent kernel [(τk + V ∓ iε)−1](r, ρ) for
the radial Dirac operator admits a path integral representation: for every pair of
f, g ∈ C∞

00 (R+)⊗C2,

(
f, (τk + V ∓ iε)−1g

)
=

∫ ∞

0

∫ ∞

0

tf(r)[(τk + V ∓ iε)−1](r, ρ)g(ρ) drdρ =

= i

∫ ±∞

0

dt

∫

C(|0,t|→R+)

〈
tf(R(t)), dµt,0(R) g(R(0))

〉

×
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×R(t)1/2R(0)1/2 exp

(

−

∫ t

0

(
iV (R(s))R(s) ± εR(s)

)
ds

)

. (5)

In particular, the resolvent kernel [(τk + V ∓ iε)−1](r, ρ) is a distribution of order
zero in (r, ρ) ∈ R+ ×R+.
(ii) The measure µt,0 is concentrated on the set of continuous paths R : |0, t| → R+

for which there exists a finite partition:

0 = t0 Q t1 Q · · · Q tn+1 = t

of the interval |0, t| such that for th−1 Q s Q th, 1 ≤ h ≤ n+ 1,

R(s) = R(0) exp

[

±

(h−1∑

p=1

(−1)p−1(tp − tp−1) + (−1)h−1(s− th−1)

)]

. (6)

Thus each path R(·) is, for some finite n, an n-vertex piecewise smooth curve in
the radial space-time.
(iii) Suppose that 0 is not an eigenvalue of the radial Dirac operator τk +V . If the
Green’s function G±(r, ρ) for τk + V exists, then it is a distribution of order zero

in (r, ρ) ∈ R+2
, and given as follows : for every pair of f, g ∈ C∞

00 (R+)⊗C2,

∫ ∞

0

∫ ∞

0

tf(r)G±(r, ρ)g(ρ) drdρ = lim
ε→+0

the right-hand side of (5) . (7)

0
s (time)

0

r  
(r

ad
ia

l c
oo

rd
in

at
e)

t

n=6

n=5

R2
(6)(0)

R1
(6)(0)

R2
(5)(0)

R1
(5)(0)

R2
(6)(t)

R1
(6)(t)

R2
(5)(t)

R1
(5)(t)

R2
(6)

R1
(6)

R2
(5)

R1
(5)

Fig. 1. Two 5, 6 times zigzag paths R(5)(·), R(6)(·) are illustrated among the paths R(·)
between the time interval 0 ≤ s ≤ t on which the path space measure µt,0 is concentrated.

The property of the support of the measure µt,0 in Theorem (ii) may be thought
to describe a Zitterbewegung (see [23] or e.g. [24]) of a Dirac particle in radial space-
time, because the path R(·) in the support is a continuous zigzag curve which in
every finite time interval is, for some finite n, on each of its n-partitioned short time
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intervals a segment exponentially growing or decreasing, though not a straight line
segment. If formally expressed, equation (7) becomes, taking the “delta functions”
at the 2 points r > 0 and ρ > 0 respectively for f and g:

G±(r, ρ) = i lim
ε→+0

∫ ±∞

0

dt

∫

C(|0,t|→R+), R(0)=ρ, R(t)=r

dµt,0(R)×

×R(t)1/2R(0)1/2 exp

(

−

∫ t

0

(
iV (R(s))R(s)± εR(s)

)
ds

)

.

Section 2 gives an outline of how to construct the path space measure for the
relevant operator r1/2τkr

1/2 to the radial Dirac operator τk in (2). In Section 3,
we establish a path integral representation for the unitary group for the relevant
operator to get to the Green’s function of the original radial Dirac operator τk +
V (r). In Section 4, a problem is discussed on Yukawa2 quantum field theory. The
details of the contents until Section 3 is referred to [12].

2 Outline of construction of the path space measure

We consider only the case t > 0, so that |0, t| means the interval 0 ≤ s ≤ t
or [0, t]. We want to construct our path space measure µt,0 on the space of the

1-dimensional continuous paths R : [0, t] → [0,∞) = R+ living on the closed half-
line. The argument will go analogously with our argument used in [10] for the Dirac
equation in 1-dimensional space R.

Consider the Cauchy problem for the relevant operator r1/2τkr
1/2 in (4) instead

of the original free radial Dirac operator τk in (2):

∂tu(r, t) = −i[r1/2τkr
1/2]u(r, t) , r > 0 , t > 0 ,

u(r, 0) = g(r) , t = 0 .
(8)

This is a hyperbolic system of the first order with the local propagation speed
c(r) = r. Crucial is that this Cauchy problem is L∞ well-posed and satisfies:

Lemma 2.1. The solution u(r, t) of (8) obeys for every C2-valued continuous
function g = t(g1, g2) in R+ with compact support in a bounded interval [0, c] with
c > 0 the inequality:

‖u(·, t)‖∞ =
∥
∥
∥e−it[r1/2τkr1/2]g

∥
∥
∥
∞
≤ e|t|(M(c,k)+3/2)‖g‖∞ , (9)

with M(c, k) = mc+ |k|, and u(·, t) has support in the bounded closed interval
[

e−|t| inf supp g, e|t| sup supp g] ⊂ [0, e|t|c
]

.

We begin to construct our path space measure µt,0.

Let Ṙ+ = R+ ∪ {∞} = [0,∞) ∪ {∞} be the one-point compactification of

R+ = [0,∞), and, for each fixed t > 0, let Rt,0 :=
∏

[0,t] Ṙ
+ =

(

Ṙ+
)[0,t]

be the
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uncountably many copies of Ṙ+. By the Tychonoff theorem Rt,0 is a compact
Hausdorff space in the product topology. It may be regarded as the space of all
paths R : [0, t] → Ṙ+, possibly discontinuous and possibly passing through zero
and/or ∞.

Let C(Rt,0) be the Banach space of the C-valued continuous functions on Rt,0,
and Cfin(Rt,0) its subspace of those Ψ in C(Rt,0) for which there exist a finite
partition of the interval [0, t]:

0 = s0 < s1 < · · · < s`−1 < s` = t ,

and a C-valued bounded continuous function F (x0, . . . , x`) on (Ṙ+)`+1 such that

Ψ(R) = F
(
R(s0), R(s1), . . . , R(s`)

)
.

In view of (4) put

C := −i
[

r1/2τkr
1/2

]

=: A+B , (10)

A := −i

[

ir1/2σ3
∂

∂r
r1/2

]

=

(
1 0
0 −1

)

r1/2
( ∂

∂r

)

r1/2 , (11)

B := −i(−kσ1 +mrσ2) =

(
0 ik +mr

ik −mr 0

)

. (12)

LetK(t; r, ρ) be the integral kernel of etC = e−it[r1/2τkr1/2]. Define, for each fixed
t > 0, a functional Lt,0(Ψ; f, g) which is linear in Ψ ∈ Cfin(Rt,0) and sesquilinear

in (f, g) ∈ [C∞
00 (R+)⊗C2]× [C∞

00 (R+)⊗C2], by

Lt,0(Ψ; f, g) =

∫ ∞

0

dr`

∫ ∞

0

dr`−1 · · ·

∫ ∞

0

tf(r`)K(s` − s`−1; r`, r`−1)×

×K(s`−1 − s`−2; r`−1, r`−2) · . . . ·K(s1 − s0; r1, r0)×

×F (r0, r1, . . . , r`)g(r0) dr0 . (13)

Then the right-hand side of (13) can be rewritten as

Lt,0(Ψ; f, g) = (14)

=

∫ ∞

0

∫ ∞

0

tf(r`)e
∆s`Ce∆s`−1C · · · e∆s1CF (r0, r1, . . . , r`)g(r0) dr`dr0 ,

∆sj = sj − sj−1 , 1 ≤ j ≤ ` , (15)

where e∆sjC is a linear operator (with integral kernel K(sj − sj−1; rj , rj−1) trans-
forming the functions of rj−1 to the functions of rj .

We expand etC ≡ e−it[r1/2τkr1/2] = et(A+B) as a Dyson series

etC = etA +

∞∑

n=1

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·

∫ t2

0

dt1e
(t−tn)A×

×Be(tn−tn−1)AB · · ·Be(t2−t1)ABet1A .

(16)
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Then, shifting all B in the integrand of (16) to the left by use of the commutation
relation

etAB = B(t)e−tA , B(t) :=

[

ikσ1 − imrσ2

(
et 0
0 e−t

)]

,

we see there exists a 2×2-matrixBn(∆t2, . . . ,∆tn+1) dependent on ∆tj := tj−tj−1,
1 ≤ j ≤ n+ 1, and of course, dependent on m, k, r, such that

etC = etA +

∞∑

n=1

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·

∫ t2

0

dt1 ×

×Bn(∆t2, . . . ,∆tn+1) exp

[n+1∑

j=1

(−1)j−1∆tjA

]

=

= :

∞∑

n=0

Cn(t) . (17)

We can see that Cn(t) satisfies the bound

‖Cn(t)f‖∞ ≤
(mc+ |k|)n

n!
tne3t/2‖f‖∞ , (18)

for all f ∈ C∞
0 (R+)⊗C2 with supp f ⊂ [0, c]. Moreover, since the integral kernel

of

etA = exp

[

−it

(

ir1/2σ3
∂

∂r
r1/2

)]

is given by

etA(r, ρ) =

(
et/2δ(ρ− ret) 0

0 e−t/2δ(ρ− re−t)

)

,

the integral kernel of Cn(t) has support

suppCn(t)(r, ρ) =
{

(ρ, r) ∈ R+ ×R+; ρ = r exp
(

±
[
∑n+1

j=1 (−1)j−1∆tj

])}

. (19)

Now substitute etC in (17) with t replaced by ∆sj into (15), then

Lt,0(Ψ; f, g) =

∞∑

n=0

∑

n1+···+n`=n

∫ ∞

0

∫ ∞

0

tf(r`)×

×Cn`
(∆s`) · · ·Cn2

(∆s2)Cn1
(∆s1)[F (r0, r1, . . . , r`)g(r0)]dr`dr0 =

= :

∞∑

n=0

Ln
t,0(Ψ; f, g) . (20)

To construct µt,0 on Rt,0, the next lemma is crucial.

Lemma 2.2. (i) For each t > 0, Lt,0(Ψ; f, g) and Ln
t,0(Ψ; f, g) are independent of

the choice of F corresponding to Ψ ∈ Cfin(Rt,0).
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(ii) If f, g ∈ C∞
0 (R+)⊗C2 with supp f or supp g ⊆ [0, c], then

|Lt,0(Ψ; f, g)| ≤ et(M(c,k)+3/2)‖Ψ‖ ‖f‖1 ‖g‖∞ , (21)

|Ln
t,0(Ψ; f, g)| ≤

M(c, k)n

n!
tne3t/2‖Ψ‖ ‖f‖1 ‖g‖∞ , (22)

with M(c, k) := mc+ |k|, for all n = 0, 1, 2, . . ..

Proof. It is easy to see the assertion (i) is due to the semigroup property of

etA = exp

[

−it

(

ir1/2σ3
∂

∂r
r1/2

)]

.

(ii) (22) implies (21). So it suffices to show (22). This is seen as, by the bound (18)
for Cnj (∆sj) with ∆sj instead of t,

|Ln
t,0(Ψ; f, g)| ≤

∑

n1+···+n`=n

∏̀

p=1

[
(mc+ |k|)np

np!
(∆sp)

npe3∆sp/2

]

‖F‖∞‖f‖1‖g‖∞ =

=
M(c, k)n

n!

(
∑̀

p=1
∆sp

)n

exp
(

3
2

∑̀

q=1
∆sq

)

‖F‖∞ ‖f‖1 ‖g‖∞ =

=
M(c, k)n

n!
tne3t/2‖Ψ‖ ‖f‖1 ‖g‖∞ .

Here we have used
∑̀

p=1
∆sp = t, and the identity

∑

n1+...+n`=n

(∆s1)
n1(∆s2)

n2 . . . (∆s`)
n`

n1!n2! . . . n`!
=

(
∑`

p=1 ∆sp

)n

n!
=
tn

n!
.

This ends the proof of the lemma.

A consequence of this lemma is the following. As Cfin(Rt,0) is dense in C(Rt,0)
by the Stone–Weierstrass theorem, so the inequalities (21) and (22) hold also for all
Ψ ∈ C(Rt,0). This means that for each pair (f, g), Lt,0(· ; f, g) and Ln

t,0(· ; f, g) are
C-valued continuous linear functionals on C(Rt,0). So by the Riesz representation
theorem, there exist C-valued regular Borel measures µt,0;f,g and µn

t,0;f,g on Rt,0

for n = 0, 1, 2, . . ., such that for all Ψ ∈ C(Rt,0),

Lt,0(Ψ; f, g) =

∫

Rt,0

dµt,0;f,g(X) Ψ(X) , (23)

Ln
t,0(Ψ; f, g) =

∫

Rt,0

dµn
t,0;f,g(X) Ψ(X) . (24)

Hence we can also see that there exist C∞
00 (R+

2
)′⊗M2(C) (distribution)-valued

regular Borel measures µt,0(·) and µn
t,0(·) on Rt,0 such that for every pair (f, g) ∈

[C∞
00 (R+)⊗C2]× [C∞

00 (R+)⊗C2],

〈tf, µt,0(·)g〉 = µt,0;f,g(·) , 〈tf, µn
t,0(·)g〉 = µn

t,0;f,g(·) .
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Here note it to hold that

C∞
00 (R+

2
)⊗M2(C) = [C∞

00 (R+)⊗C2]⊗̂[C∞
00 (R+)⊗ (C2)′] ,

C∞
00 (R+

2
)′ ⊗M2(C) = [C∞

00 (R+)′ ⊗C2]⊗̂[C∞
00 (R+)′ ⊗ (C2)′] ,

where these tensor products on the right are completed in the π- or ε-tensor product
topology, because C∞

00 (R+) and C∞
00 (R+)′ are nuclear spaces.

It follows from the expansion (20) that

µt,0;f,g(·) =

∞∑

n=0

µn
t,0;f,g(·) , µt,0(·) =

∞∑

n=0

µn
t,0(·) , (25)

respectively, in the sense of expansion of the complex-valued measure and in the
sense of expansion of the 2× 2-matrix distribution-valued measure.

Finally we observe on which set of the paths the measures µt,0 and µn
t,0 are

concentrated.
To do so, inspect the expression (17) in Cnj (∆sj):

Cnj (∆sj) =

∫ sj

sj−1

dtj,nj

∫ tj,nj

sj−1

dtj,nj−1 · · ·

∫ tj,2

0

dtj,1 ×

×Bnj (∆tj,2, . . . , l∆tj,nj+1) exp

( nj+1∑

q=1
(−1)q−1∆tj,qA

)

,

and consider their product

Cn`
(∆s`) · · ·Cn2

(∆s2)Cn1
(∆s1) =

=

∫

. . .

∫

dtn`Bn`
(· · ·)e(···)A

∫

. . .

∫

dtn`−1Bn`−1
(· · ·)e(···)A

× · · ·

∫

. . .

∫

dtn2Bn2
(· · ·)e(···)A

∫

. . .

∫

dtn1Bn1
(· · ·)e(···)A

to find its integral kernel. Here keep in mind the support property (19) of Cn(t).
We change the n = n1 + . . .+ n` integration variables {tj,q; 1 ≤ q ≤ nj , 1 ≤ j ≤ `}
to {t1, t2, . . . , tn} in the set of ` nj-pleces

∆(s1, s2, . . . , s`) : 0 = s0 ≤ t1 ≤ t2 ≤ . . . ≤ tn1
≤ s1 ≤ tn1+1 ≤

≤ . . . ≤ s`−1 ≤ tn1+...+n`−1+1 ≤ . . . ≤ tn ≤ s` = t .

Then a little patient calculation shows that there exists a 2 × 2-matrix-valued
function B(t;n1, . . . , n`) such that

Cn`
(∆s`) . . . Cn2

(∆s2)Cn1
(∆s1) =

=

∫

. . .

∫

∆(s1,s2,...,s`)

dtndtn−1 . . . dt1B(t;n1, . . . , n`) exp

(
n+1∑

h=1

(th − th−1)A

)

.

Hence we can determine first the support of each measure µn
t,0 through the expres-

sion of Ln
t,0(Ψ; f, g) in (20), and then the support of our µt,0, by (20) and (25), as

the union of the supports of the measures µn
t,0.
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3 Path integral representation

We establish a path integral representation of Feynman–Kac type for the semi-
group exp

[
−it(r1/2(τk + V (r))r1/2)

]
or the solution u(r, t) to the Cauchy problem

(8) for the relevant operator r1/2(τk + V (r))r1/2 = r1/2τkr
1/2 + rV (r).

Theorem 3.1. For exp[−it(r1/2(τk + V (r))r1/2)] it holds that

(

f, exp[−it(r1/2(τk + V (r))r1/2)]g
)

=

=

∫

C([0,t]→R+)

〈
tf(R(t)), dµt,0(R) g(R(0))

〉

exp
[

−i

∫ t

0

V (R(s))R(s) ds
]

.
(26)

Proof. For s > 0, define a linear operator U(s):

(U(s)g)(r) =
(

e−is[r1/2τkr1/2](e−isrV (r))g
)

(r) =

=

∫ ∞

0

K(s; r, ρ)e−isV (ρ)ρg(ρ) dρ , g ∈ C∞
0 (R+)⊗C2 . (27)

The operator U(s) is a contraction on L2(R+)⊗C2 because e−i[r1/2τkr1/2] is unitary,
and also bounded in the L∞ operator norm by Lemma 2.1. Then for every integer

n > 0 with sh−1 :=
(h− 1)t

n
, h = 1, 2, . . . , n + 1, we find by (13) that for f ∈

C∞
0 (R+)⊗C2,

(f, U(t/n)ng) =

(n+1)−times
︷ ︸︸ ︷
∫ ∞

0

· · ·

∫ ∞

0

tf(rn)
←−∏n

h=1
K

(
t

n
; rh − rh−1)×

× exp

[

−i
n∑

h=1

V (rh−1)rh−1

( t

n

)]

g(r0) dr0dr1 . . . drn =

=

∫

C([0,t]→R+)

〈
tf(R(t)), dµt,0(R) g(R(0))

〉

×

× exp

[

−i
n∑

h=1

V (R(sh−1))R(sh−1)
t

n

]

.

Then, as n→∞, the first member above converges, by the Trotter product for-
mula (e.g. [RS]), to (f, exp[−it(r1/2(τk +V (r))r1/2)]g), since r1/2(τk +V (r))r1/2 =
r1/2τkr

1/2 + rV (r) is essentially selfadjoint on C∞
0 (R+)⊗C2.

On the other hand, the last member converges, by the Lebesgue convergence
theorem, to

∫

C([0,t]→R+)

〈
tf(R(t)), dµt,0(R) g(R(0))

〉

exp
[

−i
∫ t

0
V (R(s))R(s) ds

]

.

Thus we have shown Theorem 3.1.
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Remark. The Trotter product formula used here is the unitary one, which usually
converges only in the strong operator topology. Though it is irrelevant to the above
proof, we would like to note here that there are some nontrivial special cases where
the unitary Trotter product formula converges even in the operator norm, including
the case for the Dirac operator −i

∑3
j=1 αj∂xj +mβ+V (x) with suitable potentials

V (x). This fact has recently been discussed in [14] (see also [11]).

Now, the proof of the main theorem is immediate. In Theorem 3.1, with ε > 0
consider exp[−it(r1/2(τk +V (r))r1/2∓ iεr)] instead of exp[−it(r1/2(τk +V (r))r1/2)].
Then we can get by Theorem 3.1 the expression (26) corresponding to this case.
Then taking into account the relation between the radial Dirac operator τk + V (r)
and the relevant operator r1/2(τk + V (r))r1/2 with the relation (3) in mind, we
have only take the Laplace transform of both sides to get (5). This shows the main
theorem.

4 Application to a problem in Yukawa2 quantum field theory

Battle and Rosen [1] used Vekua–Bers’s theory of generalized analytic functions
to show the FKG inequality for Yukawa2 quantum field theory. The Y2 measure is
formally given by

dν(φ) :=
1

Z
eW (φ)

∏

x∈R2

dφ(x) ,

W (x) := − 1
2

(
φ, (−∆ +m2

b)φ
)

+ TrK − 1
2 : TrK∗K : + Tr ln(1−K) ,

with a normalization constant Z, where φ is the Boson field with Boson mass
mb > 0. K is an operator with integral kernel

K(x, y) := S(x, y)φ(y)χΛ(y) ,

with χΛ the indicator function of the set Λ ⊂ R2, and for x = (x0, x1) ∈ R2,

S(x, y) := (−β∂x +mf )−1Γ , β∂x = β0∂0 + β1∂1 ,

β0 :=

(
0 1
1 0

)

= σ1 , β1 :=

(
1 0
0 −1

)

= σ3 ,

with mf ≥ 0 being the Fermi mass. They considered the two cases

a) Γ :=

(
1 0
0 1

)

= I2 (scalar Y2) ,

b) Γ :=

(
0 −1
1 0

)

= −iσ2 (pseudo-scalar Y2) .

Then the FKG Inequality (like 〈fg〉 ≥ 〈f〉〈g〉) holds if
δ2W

δφ(x)δφ(y)
≥ 0, x 6= y.

This condition is equivalent to showing that trS ′(x, y)S′(y, x) ≤ 0, x 6= y, where tr

11
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strands for the 2× 2- matrix trace, and S ′ := (1−K)−1S is the Green’s function
(vanishing at ∞) for the 2-dimensional Euclidean Dirac equation

[
Γ−1(−β∂x +mf )− φ(x)χΛ(x)

]
S′(x, y) = δ(x− y) .

The approach of the present note will give a path integral representation for this
Green’s function S′(x, y), though it may be the case where the function φ and the
set Λ are rotation-invariant on R2, and be suggested to give an alternative proof
to the FKG inequality. The issue will be discussed elsewhere.
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