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A modified version of Klauder’s coherent state is presented. Klauder’s state is a
generalized coherent state that can be constructed in terms of the energy eigenstates of a
given non-degenerate system without referring to any symmetry group. It can be formed
for continuous as well as discrete dynamics. The proposed modification allows us to deal
with degenerate systems and to treat discrete states and continuous states in a unified
manner. Some examples are given for illustration.

1 Introduction

As is well-known, the standard coherent states |z〉 ∈ H for the harmonic oscil-
lator [1] are defined, for all z ∈ C, by one of the following equivalent relations;

â|z〉 = z|z〉 (1)

|z〉 = D̂(z)|0〉 with D̂(z) = ezâ†−z∗â , (2)

|z〉 = e−|z|2/2
∞
∑

n=0

zn

√
n!

|n〉 , (3)

where [â, â†] = 1̂, â†â|n〉 = n|n〉 (n = 0, 1, 2, . . .), and â|0〉 = 0, as usual. The
coherent states admit a resolution of unity,

1̂ =

∫

C

|z〉〈z| dx dy

π
,

where x = Re z and y = Im z. If the Hamiltonian is given by Ĥ = ωâ†â, then the
coherent states are temporally stable in the sense that

e−iĤt|z〉 =
∣

∣e−iωtz
〉

.

In generalizing the harmonic oscillator coherent states, we can start by choosing
one of the above definitions. For instance, Barut and Girardello [2], noticing that
the oscillator coherent states as defined by (1) are eigenstates of the non-compact
operator â constructed a set of generalized coherent states for the group SU(1, 1)
as eigenstates of the non-compact operator of SU(1, 1). Realizing that the dis-
placement operator D̂(z) in relation (2) is a representation of the Heisenberg–Weyl
group, Perelomov defined a set of generalized coherent states for any semi-simple
group G with an isotropy subgroup H by |x(g)〉 = T̂ (g)|0〉. Here x(g) with g ∈ G
is a point in the coset space G/H , and T̂ (g) is a representation of G acting in the
Hilbert space H. In most attempts, generalized coherent states are based on some
group structures.
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In [3], Klauder gave up the group, and generalized the relation (3) by stipulating
that coherent states are (i) continuous in their parameters, (ii) admit a resolution
of unity, and (iii) are temporally stable (i.e., evolution among themselves in time).
Then he proposed a set of coherent states for a nondegenerate system with an
energy spectrum En = ωen (n = 0, 1, 2, . . . ; e0 = 0), which are labelled by two real
parameters s (0 ≤ s <∞) and γ (−∞ < γ <∞) as

|s, γ〉 = M(s2)

∞
∑

n=0

sne−iγen

√
ρn

|n〉 , (4)

where |n〉 is the eigenstate belonging to En and ρn is the n-th moment of a proba-
bility distribution function ρ(u) > 0,

ρn =

∫ ∞

0

un ρ(u) du . (5)

For Klauder’s coherent states (4), the choice of ρ(s2) is arbitrary. The normalization
factor M(s2) is determined so as to satisfy 〈s, γ|s, γ〉 = 1, namely,

M(s2)−2 =

∞
∑

n=0

s2n

ρn
.

With the Hamiltonian Ĥ such that Ĥ |n〉 = ωen|n〉, it is apparent that

e−iĤt|s, γ〉 = |s, γ + ωt〉 ,
which is taken in [3] as the exhibition of temporal stability of the coherent states.
The states satisfy the resolution of unity,

∫

dµ(s, γ) |s, γ〉〈s, γ| = 1̂dis

with a measure µ(s, γ) defined by

∫

dµ(s, γ) f(s, γ) = lim
Γ→∞

1

2Γ

∫ ∞

0

k(s2) ds2
∫ Γ

−Γ

dγ f(s, γ) (6)

provided that

lim
Γ→∞

1

2Γ

∫ Γ

−Γ

dγ eiγ(en−e
n′ ) = δn,n′ ,

that is, that all en are distinct (no degeneracies). In (6),

k(s2) =
ρ(s2)

M(s2)2
,

which remains unspecified until the form of ρ(s2) in (5) is given. Later, Gazeau
and Klauder [5], letting s2 = J , imposed an additional condition, called the action
identity [5],

〈J, γ|Ĥ|J, γ〉 = ωJ , (7)
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which leads ρn to the form,

ρn =

n
∏

j=1

ej , ρ0 = 1 .

By this condition, they interpret the parameter J as the classical action variable
conjugate to the angle variable ω.

Gazeau and Klauder [5] also proposed coherent states for continuum dynamics.
For a Hamiltonian with a non-degenerate continuous spectrum 0 < ωε < ωε̄, the
proposed coherent states take the form,

|s, γ〉 = M(s2)

∫ ε̄

0

sεe−iγε

√

ρ(ε)
|ε〉dε , (8)

where

M(s2)−2 =

∫ ε̄

0

s2ε

ρ(ε)
dε

to meet 〈s, γ|s, γ〉 = 1 for 0 ≤ s < s̄. The function ρ(ε) in (8) is determined with
an appropriate non-negative weighting function σ(s) ≥ 0 as

ρ(ε) =

∫ ε̄

0

s2εσ(s) ds . (9)

These coherent states for a continuous spectrum evolve in time among themselves.
With dµ(s, γ) = (1/2π)M(s)−2σ(s) ds dγ, the resolution of unity,

∫

dµ(s, γ)|s, γ〉〈s, γ| = 1̂cont ,

is fulfilled. In [5], the resolution of unity is set up independently for the discrete
and the continuous case.

The major merit of Klauder’s coherent states is that these states can be con-
structed by means of energy eigenstates for any physical system. However, there
are some shortcomings; Klauder’s states cannot be used for degenerate systems
and the way (à la Gazeau–Klauder) of constructing continuous coherent states
is somewhat unnatural. Furthermore, it is questionable that the action identity
necessarily leads to the classical action–angle variable interpretation. Indeed the
parameter J = s2 plays a role of the action variable for the harmonic oscillator.
If 〈J, γ|Ĥ|J, γ〉 corresponds to the classical energy Ecl, then J = Ecl/ω is the
adiabatic invariant. Application of the Bohr–Ishiwara–Sommerfeld–Wilson quan-
tization J = n (n = 0, 1, 2, . . .) results in Ecl → en = n, which is true only for the
harmonic oscillator.

In the present paper, we modify Klauder’s coherent states so as to accommodate
degenerate systems and to treat the discrete and continuous states together in a
unified manner. We give up the action identity. We follow closely to the formal
structures of the harmonic oscillator coherent states, replacing the action identity
by the condition that the distribution function has the universal form ρ(u) = e−u

not only for the harmonic oscillator but also for all other relevant systems. For
simplicity, we abbreviate now on the term coherent states by CS.
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2 Generalized coherent states

We begin by considering a system with the Hamiltonian Ĥ. Let Ĥ |n〉 = En|n〉.
As in [3], let the energy spectrum be expressed in the form En = ω[n] (n =
0, 1, 2, . . .); [0] = 0), where [n] is a dimensionless energy spectrum identical with en

in [3]. The main reason, why en is replaced by [n] is to emphasize the close affinity
of the present generalized CS to the standard harmonic oscillator CS. In this sense,
we treat [n] as a generalized number. However, the integral number n only labels
the energy levels and is not necessarily referring to a particular quantum number.

By utilizing the generalized number [n], we propose a set of generalized coherent
states,

|Z〉 = N(Z)
∞
∑

n=0

Z [n]

√
ρn

|n〉 .

Here Z is a complex number defined over a covering space of the complex plane
(i.e., the multiple Riemann sheets with the branch point at the origin) denoted by
∗C, and ρn is the n-th generalized moment of a distribution function ρ(u) > 0,

ρn =

∫ ∞

0

duu[n]ρ(u) .

Here we choose ρ(u) = e−u (u > 0) for all relevant systems, so that

ρn = Γ
(

[n] + 1
)

= [n]! .

This factorization condition replaces the action identity of Gazeau and Klauder.
The normalization factor N(Z) can be determined by

〈Z|Z〉 = |N(Z)|2
∞
∑

m=0

∞
∑

n=0

Z∗ [m]Z [n]

√

[m]! [n]!
〈m|n〉 = |N(Z)|2

∑

n

|Z|2[n]

[n]!
= 1 .

Introducing the generalized exponential function,

[e]x ≡
∞
∑

n=0

x[n]

[n]!
(x ∈ R) ,

we express the normalization factor as

N(Z) = [e]−|Z|2/2 .

Consequently, the proposed CS takes the form,

|Z〉 = [e]−|Z|2/2
∞
∑

n=0

Z [n]

√

[n]!
|n〉 .

It is apparent that the structure of this CS is very similar to that of the harmonic
oscillator CS. In particular, for the harmonic oscillator, [n] = n and [e]x = ex;
furthermore the general eigenstate |n〉 becomes Fock’s number state. Hence the
generalized CS reduces to the standard CS.
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3 Properties

If we let Z = s e−iγ (0 < s < ∞, −∞ < γ < ∞), then the proposed CS
coincides with Klauder’s CS. Accordingly, the three properties Klauder’s states
possess are to be shared with the present CS. Evidently the CS is continuous in the
two parameters, s and γ. It is also easy to show that

e−iĤt|Z〉 = |Ze−iωt〉 .
Hence the CS is temporally stable.

To derive the resolution of unity, we have to exercise caution. Before carrying
out the integration of |Z〉〈Z|, we write the CS as

|Z〉 = lim
ε→0

∞
∑

n=0

Z [n]+εn

√

[n]!
|n〉

and modify Klauder’s measure (6) as
∫

dµ(Z) f(Z) = lim
ε→0

lim
Γ→∞

1

2Γ

∫ Γ

−Γ

dγ

∫

ds2N2(s2) e−s2

f(s, γ) (10)

with

lim
ε→0

lim
Γ→∞

1

2Γ

∫ Γ

−Γ

dγeiγ([n]+εn−[n′]−εn′) = lim
ε→0

δ([n] + εn− [n′] − εn′) . (11)

For non-degenerate systems, by letting ε → 0, we see that the present CS admits
the resolution of unity as Klauder’s CS does. In the case of degeneracy, we first
calculate the integration and take the limit ε → 0. For either case, we obtain the
resolution of unity,

∫

d2Z |Z〉〈Z| = 1disc . (12)

4 Extension to the continuous states

Next we construct the coherent states for a system with a continuous spectrum
by the limiting procedure [n] → ε. Replacing [n]! by

ρ(ε) =

∫ ∞

0

duuε e−u = Γ(ε+ 1) = ε! ,

we can go naturally over to the continuous limit,

|ζ〉 = ν−2(|Z|2)
∫ ∞

0

dε
Zε

√
ε!

|ε〉 ,

where ν(x) is the ν-function [6] defined by

ν(x) =

∫ ∞

0

xt

Γ(t+ 1)
dt .

In what follows we shall discuss two examples.
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4.1 Particle in a one-dimensional box

The first example is a free particle of mass m confined to move in an infinite square
well potential,

V (x) =

{

0 for − a/2 < x < a/2 ,
∞ otherwise .

The solutions of this elementary example are well known. Since we are interested
in the limiting case where the two walls are moved to infinity in the separate direc-
tions, that is, a→ ∞, we express the solutions satisfying the boundary conditions
ψ(±a/2) = 0 in the form,

ψn(x) = An

{

eiknx − eikna e−iknx
}

, (13)

where
kn =

πn

a
, (n ∈ N) .

The energy spectrum is

En =
k2

n

2m
=

π2n2

2ma2
.

Before moving the walls to infinity, we apply the adiabatic trick by assuming
that k has a small positive imaginary part ε, and rewrite (13) as

ψn(x) = lim
ε→0

An

{

eiknx−εx − eikna−εa e−iknx−εx
}

. (14)

Then we let α → ∞ before letting ε→ 0. In this limit, the last term damps down,
so that the bound state functions tend to the free particle wave function

ψ(x) = A eikx , (15)

as the discrete spectrum kn approaches the continuous one k,

lim
a,n→∞

πn

a
= k .

Now we turn ourselves to the coherent states. The generalized number for this
system is obtained as

[n] =
En −E0

ω
= n2

with
ω = (2ma2)−1 .

From this follows

[n]! =

n
∑

j=1

j2 = (n!)2 .

As a result the coherent states for the particle in the well are given by

|Z〉disc = N(z)disc

∞
∑

n=0

Zn2

n!
|n〉 , (16)
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where the eigenstates 〈x|n〉 correspond to the solutions (13). The inverse square of
the normalization factor is

[N(Z)disc]
−2 =

∞
∑

n=0

|Z|2n2

(n!)2
,

which cannot be given in closed form.
Next we consider the limit a → ∞ of the coherent states (16). As kn tends to

the continuous value k,

[n] → ε =
k2

2m
,

and

[n]! → ε! = Γ(ε+ 1) .

Hence we obtain the CS for the free particle,

|Z〉cont = N(Z)cont

∫ ∞

0

dε
Zε

√

Γ(ε+ 1)
|ε〉.

The continuous energy eigenstate states |ε〉 correspond to the free particle wave
function (15). This time the normalization factor is given in a closed form expression
via

[N(Z)cont]
−2 =

∫

0

∞dε
|Z|2ε

Γ(ε+ 1)
= ν(|Z|2) ,

namely

N(Z) =
1

√

ν(|Z|2)
,

where ν(x) is the ν-function as has been defined earlier. By this limiting procedure,
the discrete CS is naturally converted to the continuous CS.

4.2 A compactified hydrogen atom

The next example is a radial Coulomb problem defined on a three dimensional
sphere of radius R. In [3], Klauder constructed the CS for the the hydrogen atom
in flat space but only for the bound states. Since the energy spectrum of the hydro-
gen atom in flat space has the continuous part (for scattering states) as well as the
discrete part (for bound states), Klauder’s formulation is incomplete. However, if
the hydrogen atom is placed on the sphere, the continuous part of the energy spec-
trum disappears. In other words, the confinement on the sphere compactifies the
hydrogen atom. Then we can construct the discrete CS for the compactified hydro-
gen atom according to Klauder’s recipe. It is shown in [7] that the flat space limit
R → ∞ splits the discrete Klauder CS into the discrete and continuous portions.
Here we deal with this example to demonstrate that our CS can accommodate both
the discrete and the continuous portion in a natural manner.
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The energy spectrum for the compactified hydrogen atom is given by [7] – [14]

En =
(n+ l)(n+ l + 2)

2R2
− ω

(n+ l + 1)2
,

where n = 0, 1, 2, . . . and l = 0, 1, 2, . . . , n are the radial quantum number and the
angular momentum quantum number, respectively, and ω = e4/2. The correspond-
ing radial wave function has the form [12, 7],

wn,l(χ) = Cnl sin
l χ e−iχ(n+iλn

2F1

(

−n, l + 1 − iλn; 2l + 2; 1− e2iχ
)

(17)

with the normalization factor

Cn,l = eiπ(2n+l+1)/2 2l+1

Γ(2l + 2)

[

i{(n+ l+ 1)2 + λ2
n}Γ(l+ 1 + iλin)Γ(n+ 2l + 2)

R3κnΓ(iλn − l)Γ(n+ 1)

]1/2

where χ = arcsin(r/R),

λn = − e2R

n+ l + 1
,

and
κn = min{|n+ l+ 1|, |λn|} .

In writing down the coherent states for this system, we must notice that the
accidental degeneracy of the hydrogen atom does not disappear even on the sphere.
For the present demonstration purpose, we confine ourselves to the non-degenerate
case by considering only the radial portion for the S-wave sector with l = 0. The
generalized number [n]R defined for the radial quantum number n = 0, 1, 2, . . . and
l = 0 is obtained in the form,

[n]R =
1

2R2
n(n+ 2) − e4n(n+ 2)

2(n+ 1)2
.

The factorial of [n] is given by

[n]R! =

n
∏

j=1

[

j(j + 2)

(j + 1)2

(

1 +
(j + 1)2

2ωR2

)]

, (18)

where ω = e4/2. Although [n]! is not in closed form, we can formally express the
CS for the S-wave sector of the radial Coulomb problem on the sphere as

|Z〉R = N(Z)R

∞
∑

n=0

Z [n]R

√

[n]R!
|n〉R , (19)

where 〈χ|n〉 = wn,0(χ). Since we have

[N(z)R]−2 =

∞
∑

n=0

|Z|2[n]R

[n]R!
,
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the normalization factor cannot be given in closed form either. In this regard, the
above CS have no practical values. However, it is our purpose to show that this
CS will generate a continuous as well as a discrete portion in the flat space limit.

Before taking the flat space limit R → ∞, we introduce the critical number nc

such that Enc
= 0, i.e.,

nc(nc + 2)(nc + 1)2 = 2ωR2

and separately consider the two cases (a) n < nc and (b) n ≥ nc. Note that nc

goes to infinity as fast as
√
R as R tends to infinity.

Case (a): For n < nc

∣

∣

∣

∣

En +
e4

2(n+ 1)2

∣

∣

∣

∣

<
nc(nc + 2)

2R2
∼ 1

R
→ 0 .

Hence, we obtain

En = − e4

2(n+ 1)2
,

which is the bound state spectrum in flat space. In the same limit, the S-wave
radial functions (17) become

un(r) = Cne−re2/(n+1)
1F1

(

−n− 1; 2; 2re2/(n+ 1)
)

with the normalization constant,

Cn =

[

(

2e2

n+ 1

)3
1

2(n+ 1)

]1/2

.

These are as expected the S-wave radial wave functions of the usual hydrogen atom
bound states.

Case (b): For n ≥ nc, we approximate ∆n/R by dk with a continuous parameter
k > 0, so that n− nc = kR. In the limit R → ∞,

En =
kR+ nc)(kR + nc + 2)

2R2
− ω

(kR+ nc + 1)2
→ k2

2
.

This part of the spectrum turns into a continuous spectrum,

Ek = 1
2 k

2 ≥ 0 .

In the limit R → ∞ for n ≥ nc, the radial functions wn,l(χ) for l = 0 become

vk(r) =

(

2

πe2

)1/2

k2

∣

∣

∣

∣

Γ

(

1 − ie2

2k

)∣

∣

∣

∣

eikr
1F1

(

1 +
ie4

2k
; 2; 2ikr

)

,
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which are the S-wave functions for the scattering states of the hydrogen atom in
flat space.

Now we consider the flat space limit of the formal result (19),

|Z〉 = lim
R→∞

N(Z)

{

∑

n<nc

+
∑

n≥nc

}

Z [n]R

√

[n]R!
|n〉R . (20)

For n < nc,

lim
R→∞

[n]R = [n] = − ω

(n+ 1)2
, n = 0, 1, 2, . . . ,

and

lim
R→∞

[n]R! = [n]! =

n
∏

j=1

j(j + 2)

(j + 1)2
=
n!(n+ 2)!

[(n+ 1)!]2
.

Thus the limit of the first term of (20) for n < nc becomes

|Z〉disc = N (Z)

∞
∑

n=0

Z [n]

√

[n]!
|n〉 ,

where 〈r|n〉 = un(r).
For n ≥ nc,

lim
R→∞

[n]R = 1
2 k

2 = ε

and

lim
R→∞

[n]R = lim
R→∞

∫ ∞

0

duu[n]Re−u = Γ(ε+ 1) = ε! .

Here use of ε! for Γ(ε+1) is to emphasize that ε! is a natural continuum counterpart
of [n]!.

The second term of (20) for n ≥ nc reduces to

|Z〉cont = N (Z)

∫ ∞

0

dε
Zε

√
ε!

|ε〉 ,

where 〈r|ε〉 = vn(r).
Consequently, as the flat space limit of (20), we obtain CS for the S-wave radial

Coulomb problem, which consists of the discrete and continuous portions:

|Z〉 = N (Z)

{ ∞
∑

n=0

Zn(n+2)/(n+1)2

√

(n+ 2)/(2n+ 2)
|n〉 +

∫ ∞

0

dε
Zε

√
ε!

|ε〉
}

.

The normalization factor N (Z) common to the discrete and continuous portions is
determined by

[N (Z)]−2 =

∞
∑

n=0

|Z|2n(n+2)/(n+1)2

(n+ 2)/(2n+ 2)
+

∫ ∞

0

dε
|Z|ε
ε!

.

In this way we are able to demonstrate that the continuous portion of CS for
the radial Coulomb problem can be obtained very naturally.
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5 Propagator

Here we consider the propagator with the present CS,

K(Z ′′, t′′;Z ′, t′) = 〈Z ′′|e−iĤ(t′′−t′)|Z ′〉 . (21)

5.1 Path integral representation

As usual, with the aid of the resolution of unity (12), we discretize the propagator
(21) as

〈Z ′′|e−iĤ(t′′−t′)|Z ′〉 lim
N→∞

∫ N
∏

j=1

〈Zj |e−iεĤ |Zj−1〉
N−1
∏

j=1

dµ(Zj) ,

where dµ(Z) is the modified Klauder measure (10). The propagator for a short
time ε = (t′′− t′)/N can be calculated by taking only the first order approximation
in ε;

〈Zj |e−iεĤ |Zj−1〉 = 〈Zj |1 − iεĤ |Zj−1〉 = 〈Zj |Zj−1〉(1 − iεhj)〈Zj |Zj−1〉e−iε ,

where

hj =
〈Zj |Ĥ |Zj−1〉
〈Zj |Zj−1〉

.

Hence we have

〈Zj |e−iεĤ |Zj−1〉 = exp

{

iε

(

− i

ε
ln〈Zj |Zj−1〉 − hj

)}

.

Let ∆|Zj−1〉 = |Zj〉 − |Zj−1〉. Then

〈Zj |∆|Zj−1〉 = 1 − 〈Zj |Zj−1〉 = − ln〈Zj |Zj−1〉 .

Thus we arrive at

K(Z ′′, t′′;Z ′, t′) = lim
N→∞

∫ N
∏

j=1

dµ(Zj) exp







iε

N
∑

j=0

(

i

ε
〈Zj |∆|Zj−1〉 − hj

)







.

In the path integral representation, the propagator is formally given by

K(Z ′′, t′′;Z ′, t′) =

∫

Dµ(Z) exp

{

iε

∫

dt

(

i〈Z| d

dt
|Z〉 − 〈Z|Ĥ |Z〉

)}

,

which is the same in structure as that of the harmonic oscillator.
It has been pointed out by Kuratsuji [15] that the first term in the action

integral is geometrical while the second term (the Hamiltonian term) is dynamical.
In classical limit, the first term corresponds to Hamilton’s characteristic function,

W (E) =

∮

H=E

〈Z|i d

dt
|Z〉dt ,

11
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where the integral is taken along periodic orbits on the energy surface. The poles
of the energy Green function defined by

G(E) = i

∫ ∞

0

eiEτ K(τ) dτ

with

K(τ) =

∫

〈Z|e−iτĤ |Z〉d2Z

yields a quantization rule,

∮

〈Z|i d

dt
|Z〉dt = nπ , n = 0, 1, 2, . . . ,

details of which will be discussed elsewhere. For instance, the integral along a
periodic orbit for a classical particle of momentum k confined in the one-dimensional
box of length a has a value ak. Hence the quantization rule yields k = πn/a. The
energy Ecl = k2/2m is quantized as En = π2n2/(2ma2). This example shows
that the integral along a periodic orbit is not identifiable with the classical energy
contrary to what the Gazeau–Klauder action identity claims.

5.2 Series representation

The propagator (21) can also be put in the form,

K(Z ′′, t′′;Z ′, t′) = 〈Z ′′|e−iĤ(t′′−t′)|Z ′〉 = 〈Z ′′e−iωt′′ |Z ′e−iωt′〉 . (22)

From this immediately follows

K(Z ′′, t′′;Z ′, t′) = N(Z ′′)N(Z ′)
∞
∑

n=0

(Z ′′∗Z ′eiω(t′′−t′))[n]

[n]!
,

where

N−2(Z) =

∞
∑

n=0

|z|2[n]

[n]!
= [e]|Z|2 , .

In terms of the generalized exponential function, the propagator reads

K(Z ′′, t′′;Z ′, t′) = [e]−|Z′′|2/2 [e]−|Z′|2/2 [e]Z
′Z′′∗ exp

(

iω(t′′−t′)
)

.

In particular, if [n] = n, it reduces to

K(z′′, t′′; z′, t′)osc = exp

{

−|z′′|2
2

− |z′|2
2

+ z′z′′∗eiω(t′′−t′)

}

,

which is the propagator for the harmonic oscillator.
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Modification of Klauder’s coherent states

6 Concluding remarks

By modifying Klauder’s coherent states, we have proposed a set of generalized
coherent states which are applicable to some degenerate systems and appropriate for
defining discrete and continuous coherent states in a natural and unified manner.
However, more often than not, the discrete portion of the normalization factor
cannot be obtained in closed form. Therefore, the Gazeau–Klauder version are
more practical than ours insofar as non-degenerate systems are concerned.

We would like to thank John R. Klauder for his useful comments.
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