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This note is an exposition of our resent papers [10, 23]. We give a fairly general class
of functionals on a path space so that Feynman path integral has a mathematically rig-
orous meaning. More precisely, for any functional belonging to our class, the time slicing
approximation of Feynman path integral converges uniformly on compact subsets of the
configuration space. Our class of functionals is closed under addition, multiplication,
translation, real linear transformation and functional differentiation. The integration by
parts and Taylor’s expansion formula with respect to functional differentiation holds in
Feynman path integral. Feynman path integral is invariant under translation and orthog-
onal transformation. The interchange of the order with Riemann–Stieltjes integrals, the
interchange of the order with a limit, the perturbation expansion formula, the semiclassical
approximation and the fundamental theorem of calculus holds in Feynman path integral.
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1 Introduction

In 1948, R.P. Feynman [3] expressed the integral kernel of the fundamental
solution for the Schrödinger equation, using the path integral as follows:

∫

eiS[γ]/~D[γ] . (1.1)

Here 0 < ~ < 1 is Planck’s constant, γ : [0, T ] → Rd is a path with γ(0) = x0 and
γ(T ) = x, and S[γ] is the action along the path γ defined by

S[γ] =

∫ T

0

(

1

2

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

2

− V
(

t, γ(t)
)

)

dt . (1.2)

The path integral is a new sum of eiS[γ]/~ over all the paths. Feynman explained
his new integral as a limit of the finite dimensional integral, which is now called
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the time slicing approximation. Furthermore, Feynman suggested a new analysis
on a path space with the functional integration

∫

F [γ]eiS[γ]/~D[γ] ,

and the functional differentiation (DF )[γ][η]. (cf. Feynman–Hibbs [4], L.S. Schul-
man [27]) However, in 1960, R.H. Cameron [2] proved that the completely additive
measure eiS[γ]/~D[γ] does not exist.

In this note, using the time slicing approximation, we treat the functional dif-
ferentiation (DF )[γ][η], the translation F [γ +η] and the orthogonal transformation
F [Qγ] in the Feynman path integral

∫

eiS[γ]/~F [γ]D[γ] (1.3)

for a fairly general class F∞ of functionals F [γ] on the path space C([0, T ] → Rd)
by a mathematically rigorous discussion.

Our class F [γ] ∈ F∞ satisfies the following:

(0) For any F [γ] ∈ F∞, (1.3) has a mathematically rigorous meaning. More
precisely, the time slicing approximation of (1.3) converges uniformly on any
compact set on the configuration space R2d with respect to endpoints (x, x0).

(1) The class F∞ is an algebra, i.e.

F [γ], G[γ] ∈ F∞ =⇒ F [γ] + G[γ], F [γ]G[γ] ∈ F∞ .

(2) The class F∞ is closed under the translation with any broken line path η and
the linear transformation with any d × d real matrix P , i.e.

F [γ] ∈ F∞ =⇒ F [γ + η], F [Pγ] ∈ F∞ .

(3) The class F∞ is closed under the functional differentiation D, i.e.

F [γ] ∈ F∞ =⇒ (DF )[γ][η] ∈ F∞ .

In other words, we can differentiate F [γ] as many times as we want.

Furthermore, the class F∞ contains the following examples of functionals F [γ]:

(a) For any function B such that |∂α
x B(t, x)| ≤ Cα(1 + |x|)m for some m > 0 and

any 0 ≤ t ≤ T , the evaluation functional

F [γ] = B(t, γ(t)) ∈ F∞ .

In particular, if F [γ] ≡ c ∈ C, then F [γ] ∈ F∞.
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(b) For the same B as in (a), the Riemann–Stieltjes integral

F [γ] =

∫ T ′′

T ′

B
(

t, γ(t)
)

dρ(t) ∈ F∞ .

(c) For any function B such that |∂α
x B(t, x)| ≤ Cα, the analytic function of the

integral

F [γ] = f

(

∫ T ′′

T ′

B
(

t, γ(t)
)

dρ(t)

)

∈ F∞ .

(d) For any vector-valued function Z such that (∂xZ) is a symmetric matrix and
|∂α

x Z(t, x)| + |∂α
x ∂tZ(t, x)| ≤ Cα(1 + |x|)m for some m > 0, the curvilinear

integral along paths

F [γ] =

∫ T ′′

T ′

Z
(

t, γ(t)
)

· dγ(t) ∈ F∞ .

Applying (1), (2), (3) to the examples (a), (b), (c), (d), the readers can produce
many functionals F [γ] belonging to the class F∞.

As an application, the integration by parts and the Taylor expansion formula,
with respect to functional differentiation holds in Feynman path integral. Fur-
thermore, Feynman path integral is invariant under translation and orthogonal
transformation. The interchange of the order with Riemann–Stieltjes integrals, the
interchange of the order with a limit, the semiclassical approximation, and the
fundamental theorem of calculus holds in Feynman path integral.

There are some mathematical works which prove the time slicing approximation
of (1.1) converges uniformly with respect to endpoints (x, x0) on compact subsets of
R2d. See D. Fujiwara [5,7–9], H. Kitada and H. Kumano-go [18], K. Yajima [29], N.
Kumano-go [21], D. Fujiwara and T. Tsuchida [14], and W. Ichinose [15]. However
all these works treated (1.1), that is the particular case of (1.3) with F [γ] ≡ 1.

Many people tried to give a mathematically rigorous meaning to Feynman path
integral. E. Nelson [25] succeeded in connecting Feynman path integral to Wiener
measure by analytic continuation with respect to a parameter. K. Itô [17] succeeded
in defining Feynman path integrals as an improper oscillatory integral over a Hilbert
manifold of paths. Albeverio and Høegh Krohn [1] and J. Rezende [26] applied Itô’s
idea and discussed many problems.

2 Main results

Let ∆T,0 be an arbitrary division of the interval [0, T ] into subintervals, i.e.

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 . (2.1)

Set xJ+1 = x. Let xj , j = 1, 2, . . . , J be arbitrary points of Rd. Let

γ∆T,0
= γ∆T,0

(t, xJ+1, xJ , . . . , x1, x0) (2.2)
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be the broken line path which connects (Tj , xj) and (Tj−1, xj−1) by a line segment
for any j = 1, 2, . . . , J, J + 1. Set tj = Tj − Tj−1 and |∆T,0| = max1≤j≤J+1 tj .

As Feynman [3] had first defined by the time slicing approximation, we define
the Feynman path integrals (1.3) by

∫

eiS[γ]/~F [γ]D[γ] = lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

F [γ∆T,0
]

J
∏

j=1

dxj ,

(2.3)
whenever the limit exists.

Remark. S[γ∆T,0
] and F [γ∆T,0

] are functions of a finite number of variables xJ+1,
xJ , . . . , x1, x0, i.e.

S[γ∆T,0
] = S∆T,0

(xJ+1, xJ , . . . , x1, x0) ,

F [γ∆T,0
] = F∆T,0

(xJ+1, xJ , . . . , x1, x0) .

Therefore Feynman omitted the first step S[γ∆T,0
], F [γ∆T,0

]. Furthermore, many
books about Feynman path integrals abandon the first step S[γ∆T,0

] in order to use
the Trotter formula, i.e.

S[γ∆T,0
] =

J+1
∑

j=1

(xj − xj−1)
2

2tj
−

J+1
∑

j=1

∫ Tj

Tj−1

V

(

t,
t − Tj−1

Tj − Tj−1
xj +

Tj − t

Tj − Tj−1
xj−1

)

dt

6=
J+1
∑

j=1

(xj − xj−1)
2

2tj
−

J+1
∑

j=1

V (Tj−1, xj−1) .

However, we keep the first step S[γ∆T,0
], F [γ∆T,0

].

Remark. Even when F [γ] ≡ 1, the integrals of the right hand side of (2.3) does
not converge absolutely. We treat integrals of this type as oscillatory integrals. (cf.
H. Kumano-go [19], H. Kumano-go and K. Taniguchi [20], D. Fujiwara, N. Kumano-
go and K. Taniguchi [13], N. Kumano-go [22, 23])

Remark. If |∆T,0| → 0, the number J of the integrals of the right hand side of
(2.3) tends to ∞. Therefore, we use the properties of F [γ∆T,0

].

Remark. If we need the endpoints (x, x0), we will use the following expression:
∫

γ(0)=x0, γ(T )=x

eiS[γ]/~F [γ]D[γ] =

∫

eiS[γ]/~F [γ]D[γ] .

Our assumption of the potential V (t, x) of (1.2) is the following:

Assumption 1. (Potential). V (t, x) is a real-valued function of (t, x) ∈ R × Rd,

and, for any multi-index α, ∂α
x V (t, x) is continuous in R × Rd. For any integer

k ≥ 2, there exists a positive constant Ak such that for any multi-index α with

|α| = k

|∂α
x V (t, x)| ≤ Ak .
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In order to state the definition of the class F∞ of functionals F [γ], we explain
the functional derivatives in this note.

Definition 1. (Functional derivatives). For any division ∆T,0, we assume that

F∆T,0
(xJ+1, xJ , . . . , x1, x0) ∈ C∞(Rd(J+2)) .

Let γ : [0, T ] → Rd and ηl : [0, T ] → Rd, l = 1, 2, . . . , L be any broken line paths.

We define the functional derivative (DLF )[γ]
∏L

l=1[ηl] by

(DLF )[γ]

L
∏

l=1

[ηl] =

(

L
∏

l=1

∂

∂θl

)

F

[

γ +

L
∑

l=1

θlηl

]
∣

∣

∣

∣

θ1=θ2=···=θL=0

.

When L = 0, we also write (DLF )[γ]
∏L

l=1[ηl] = F [γ].

Remark. Let ∆T,0 of (2.1) contain all time where the broken line path γ or the
broken line path η breaks. Set γ(Tj) = xj and η(Tj) = yj , j = 0, 1, . . . , J, J + 1.
Then, for any θ ∈ R, γ + θη is the broken line path, which connects (Tj , xj + θyj)
and (Tj−1, xj−1 + θyj−1) by a line segment for j = 1, 2, . . . , J, J +1. Hence we have

F [γ + θη] = F∆T,0
(xJ+1 + θyJ+1, xJ + θyJ , . . . , x1 + θy1, x0 + θy0) . (2.4)

Therefore, we can write (DF )[γ][η] as a finite sum as follows:

(DF )[γ][η] =
d

dθ
F [γ + θη]

∣

∣

∣

∣

θ=0

=

J+1
∑

j=0

(∂xj
F∆T,0

)(xJ+1, xJ , . . . , x1, x0) · yj . (2.5)

Using (2.5) as an approximation, Feynman–Hibbs [4] explained functional deriva-
tives. On the other hand, we ‘restrict’ the direction of functional derivatives to
broken line paths. (cf. Malliavin’s derivatives [24].)

Definition 2. (The class F of functionals F [γ]). Let F [γ] be a functional on the

path space C([0, T ] → Rd) such that the domain of F [γ] contains all of broken line

paths at least. We say that F [γ] belongs to the class F∞ if F [γ] satisfies Assumption

2. For simplicity, we write F [γ] ∈ F∞.

Assumption 2. Let m be a non-negative integer and ρ(t) be a function of bounded

variation on [0, T ]. For any non-negative integer M , there exists a positive constant

CM such that

∣

∣

∣

∣

(

D
PJ+1

j=0
Lj F

)

[γ]

J+1
∏

j=0

Lj
∏

lj=1

[ηj,lj ]

∣

∣

∣

∣

≤ (CM )J+2 (1 + ‖γ‖)
m

J+1
∏

j=0

Lj
∏

lj=1

‖ηj,lj‖ , (2.6)

∣

∣

∣

∣

(

D1+
PJ+1

j=0
Lj F

)

[γ][η]

J+1
∏

j=0

Lj
∏

lj=1

[ηj,lj ]

∣

∣

∣

∣

≤ (CM )J+2 (1 + ‖γ‖)m
∫ T

0

|η(t)|d|ρ|(t)
J+1
∏

j=0

Lj
∏

lj=1

‖ηj,lj‖ ,

(2.7)
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for any division ∆T,0 defined by (2.1), any Lj = 0, 1, . . . , M , any broken line path

γ : [0, T ] → Rd, any broken line path η : [0, T ] → Rd, and any broken line paths

ηj,lj : [0, T ] → Rd, lj = 1, 2, . . . , Lj whose supports exist in [Tj−1, Tj+1]. Here

0 = T−1 = T0, TJ+1 = TJ+2 = T , ‖γ‖ = max0≤t≤T |γ(t)| and |ρ|(t) is the total

variation of ρ(t).

Remark. Note that the support of the broken line path ηj,lj exists in [Tj−1, Tj+1]
for any j = 0, 1, . . . , J, J + 1. Roughly speaking, the broken line paths ηj,lj , j =
0, 1, . . . , J, J + 1 slice the time interval [0, T ].

Remark. About the process how we were making up Assumption 2, see D. Fuji-
wara [6], N. Kumano-go [23] and D. Fujiwara, N. Kumano-go [10] in this order.

Theorem 1. (Existence of Feynman path integral). Let T be sufficiently small.

Then, for any F [γ] ∈ F∞, the right hand side of (2.3) converges uniformly on any

compact set of the configuration space (x, x0) ∈ R2d, together with all its derivatives

in x and x0.

Remark. The size of T depends only on d and Ak of Assumption 1.

Theorem 2. (Smooth algebra). For any F [γ], G[γ] ∈ F∞, any broken line path

ζ : [0, T ] → Rd and any real d × d matrix P , we have the following.

(1) F [γ] + G[γ] ∈ F∞, F [γ]G[γ] ∈ F∞.

(2) F [γ + ζ] ∈ F∞, F [Pγ] ∈ F∞.

(3) (DF )[γ][ζ] ∈ F∞.

Remark. F∞ is closed under addition, multiplication, translation, real linear
transformation and functional differentiation. Applying Theorem 2 to the examples
of Theorem 3 (1), (2), Theorem 4 (1), Theorem 6 and Theorem 8, the reader can
produce many functionals F [γ] ∈ F∞.

Assumption 3. Let m be a non-negative integer. B(t, x) is a function of (t, x) ∈
R × Rd. For any multi-index α, ∂α

x B(t, x) is continuous on R × Rd, and there

exists a positive constant Cα such that

|∂α
x B(t, x)| ≤ Cα(1 + |x|)m .

Theorem 3. (Interchange with Riemann-Stieltjes integrals). Let 0 ≤ T ′ ≤ T ′′ ≤ T

and 0 ≤ t ≤ T . Let ρ(t) be a function of bounded variation on [T ′, T ′′]. Suppose

B(t, x) satisfy Assumption 3. Then we have the following:

(1) The value at a fixed time t

F [γ] = B(t, γ(t)) ∈ F∞ .

(2) The Riemann–Stieltjes integral

F [γ] =

∫ T ′′

T ′

B(t, γ(t))dρ(t) ∈ F∞ .
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(3) Let T be sufficiently small. Then we have

∫ T ′′

T ′

(
∫

eiS[γ]/~B(t, γ(t))D[γ]

)

dρ(t)

=

∫

eiS[γ]/~

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

D[γ] .

Furthermore, for any F [γ] ∈ F∞, we have

∫ T ′′

T ′

(
∫

eiS[γ]/~B(t, γ(t))F [γ]D[γ]

)

dρ(t)

=

∫

eiS[γ]/~

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

F [γ]D[γ] .

Remark. We explain the key of the proof of Theorem 3 (3) roughly. In order to
use the Trotter formula, many books about Feynman path integrals approximate
the position of the particle at time t by the endpoint xj or xj−1. On the other hand,
using the number j so that Tj−1 < t ≤ Tj , we keep the position of the particle at
time t, i.e.

γ∆T,0
(t) =

t − Tj−1

Tj − Tj−1
xj +

Tj − t

Tj − Tj−1
xj−1 ,

inside the finite dimensional oscillatory integral of (2.3). Therefore, we can use the
continuity of the broken line path γ∆T,0

(t) with respect to t.

Proof of Theorem 3 (3).
(1) Note that B(t, γ∆T,0

(t)) is a continuous function of t on [T ′, T ′′] together with
all its derivatives in xj , j = 0, 1, . . . , J, J + 1.
(2) By Lebesgue’s dominated convergence theorem after integrating by parts by xj ,
j = 1, 2, . . . , J (Oscillatory integrals), for any division ∆T,0,

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

B(t, γ∆T,0
(t))

J
∏

j=1

dxj

is also a continuous function of t on [T ′, T ′′].
(3) By Theorem 1, the convergence of

∫

eiS[γ]/~B(t, γ(t))D[γ]

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

B(t, γ∆T,0
(t))

J
∏

j=1

dxj

is uniform with respect to t on [T ′, T ′′].
(4) Therefore,

∫

eiS[γ]/~B(t, γ(t))D[γ]
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is also a continuous function of t on [T ′, T ′′] and Riemann–Stieltjes integrable.
(5) Furthermore, by the uniform convergence, we can interchange the order of
∫ T ′′

T ′ · · · dt and lim
|∆T,0|→0

.

∫ T ′′

T ′

(
∫

eiS[γ]/~B(t, γ(t))D[γ]

)

dt

=

∫ T ′′

T ′

lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

B(t, γ∆T,0
(t))

J
∏

j=1

dxjdt

= lim
|∆T,0|→0

∫ T ′′

T ′

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

B(t, γ∆T,0
(t))

J
∏

j=1

dxjdt .

By Fubini’s theorem after integrating by parts by xj , j = 1, 2, . . . , J (Oscillatory
integrals), we have

∫ T ′′

T ′

(
∫

eiS[γ]/~B(t, γ(t))D[γ]

)

dt

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

∫ T ′′

T ′

B(t, γ∆T,0
(t))dt

J
∏

j=1

dxj

=

∫

eiS[γ]/~

(

∫ T ′′

T ′

B(t, γ(t))dt

)

D[γ] . �

Assumption 4. f(b) is an analytic function of b ∈ C on a neighborhood of zero,

i.e., there exist positive constants µ > 0, A > 0 such that

‖f‖µ,A = sup
n, |b|≤µ

|∂n
b f(b)|

Ann!
< ∞ .

Theorem 4. (Interchange with a limit). Let 0 ≤ T ′ ≤ T ′′ ≤ T . Let ρ(t) be a

function of bounded variation on [T ′, T ′′]. Suppose B(t, x) satisfy Assumption 3
with m = 0. Let f(b) and fk(b), k = 1, 2, 3, . . . be analytic functions such that

lim
k→∞

||fk − f ||µ,A = 0. Then we have the following.

(1)

F [γ] = f

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

∈ F∞ .

(2) Let T be sufficiently small. Then we have

lim
k→∞

∫

eiS[γ]/~fk

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

D[γ]

=

∫

eiS[γ]/~f

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

D[γ] .
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Furthermore, for any F [γ] ∈ F∞, we have

lim
k→∞

∫

eiS[γ]/~fk

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

F [γ]D[γ]

=

∫

eiS[γ]/~f

(

∫ T ′′

T ′

B(t, γ(t))dρ(t)

)

F [γ]D[γ] .

Corollary. (Perturbation expansion formula). Let T be sufficiently small. Let
ρ(t) and B(t, x) be the same as in Theorem 4. Then we have

∫

exp

(

i

~
S[γ] +

i

~

∫ T ′′

T ′

B(τ, γ(τ))dρ(τ)

)

D[γ]

=
∞
∑

n=1

(

i

~

)n ∫ T ′′

T ′

dρ(τn)

∫ τn

T ′

dρ(τn−1) · · ·

∫ τ2

T ′

dρ(τ1)

×

∫

eiS[γ]/~B(τn, γ(τn))B(τn−1, γ(τn−1)) · · ·B(τ1, γ(τ1))D[γ] .

Theorem 5. (Semiclassical approximation). Let T be sufficiently small. Let F [γ] ∈
F∞ and the domain of F [γ] be continuously extended to C([0, T ] → Rd) with respect

to the norm ‖γ‖ = max0≤t≤T |γ(t)|. Let γcl be the classical path with γcl(0) = x0

and γcl(T ) = x, and D(T, x, x0) be the Morette–Van Vleck determinant.

Define Υ(~, T, x, x0) by
∫

eiS[γ]/~F [γ]D[γ]

=

(

1

2πi~T

)d/2

eiS[γcl]/~

(

D(T, x, x0)
−1/2F [γcl] + ~Υ(~, T, x, x0)

)

.

Then, for any multi-indices α, β, there exists a positive constant Cα,β such that

|∂α
x ∂β

x0
Υ(~, T, x, x0)| ≤ Cα,β (1 + |x| + |x0|)

m
.

Remark. If ~ → 0, the remainder term ~Υ(~, T, x, x0) → 0.

Theorem 6. (New curvilinear integrals along path on path space). Let 0 ≤ T ′ ≤
T ′′ ≤ T . Let m be non-negative integer. Let Z(t, x) be a vector-valued function of

(t, x) ∈ R×Rd into Rd such that, for any multi-index α, ∂α
x Z(t, x) and ∂α

x ∂tZ(t, x)
are continuous on [0, T ]×Rd, and there exists a positive constant Cα such that

|∂α
x Z(t, x)| + |∂α

x ∂tZ(t, x)| ≤ Cα (1 + |x|)
m

and ∂xZ(t, x) is a symmetric matrix, i.e. t(∂xZ) = ∂xZ.

Then the curvilinear integrals along paths of Feynman path integral

F [γ] =

∫ T ′′

T ′

Z(t, γ(t)) · dγ(t) ∈ F∞ .

Here Z · dγ is the inner product of Z and dγ in Rd.

9
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Remark. In order to explain the difference with known curvilinear integrals on a
path space, please, forgive very rough sketch. As examples of curvilinear integrals
for paths on a path space, Itô integral [16] and Stratonovich integral [28] for the
Brownian motion B(t) are successful in stochastic analysis. (cf. P. Malliavin [24])
If we can set B(Tj) = xj , Itô integral is approximated by initial points, i.e.

∫ T ′′

T ′

Z(t,B(t)) · dB(t) ≈
∑

j

Z(Tj−1, xj−1) · (xj − xj−1)

and Stratonovich integral is approximated by middle points, i.e.

∫ T ′′

T ′

Z(t,B(t)) ◦ dB(t) ≈
∑

j

Z

(

Tj + Tj−1

2
,
xj + xj−1

2

)

· (xj − xj−1) .

And many books about Feynman path integrals use endpoints or middle points. On
the other hand, if γ = γ∆T,0

, our new curvilinear integrals is the classical curvilinear
integrals itself along the broken line path γ∆T,0

, i.e.

∫ T ′′

T ′

Z(t, γ∆T,0
(t)) · dγ∆T,0

(t) . (2.8)

In other words, Itô integral and Stratonovich integral are limits of Riemann sum.
On the other hand, our new integral is a limit of curvilinear integral.

Theorem 7. (Fundamental theorem of calculus). Let m be non-negative integer

and 0 ≤ T ′ ≤ T ′′ ≤ T . g(t, x) is a function of (t, x) ∈ R×Rd such that g(t, x) and

∂tg(t, x) satisfy Assumption 3. Let T be sufficiently small. Then we have

∫

eiS[γ]/~

(

g (T ′′, γ(T ′′)) − g (T ′, γ(T ′))
)

D[γ]

=

∫

eiS[γ]/~

(

∫ T ′′

T ′

(∂xg)(t, γ(t)) · dγ(t) +

∫ T ′′

T ′

(∂tg)(t, γ(t))dt
)

D[γ] .

Furthermore, for any F [γ] ∈ F∞ we have

∫

eiS[γ]/~

(

g (T ′′, γ(T ′′)) − g (T ′, γ(T ′))
)

F [γ]D[γ]

=

∫

eiS[γ]/~

(
∫ T ′′

T ′

(∂xg)(t, γ(t)) · dγ(t) +

∫ T ′′

T ′

(∂tg)(t, γ(t))dt

)

F [γ]D[γ] .

Remark. (2.8) is the key of the proof of Theorem 7.

Proof of Theorem 7. By Theorem 3(1) and Theorem 2(1), we have

G1[γ] = g
(

T ′′, γ(T ′′)
)

− g
(

T ′, γ(T ′)
)

∈ F∞ .

10
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We note that t(∂2
xg) = (∂2

xg). By Theorem 6, Theorem 3(2) and Theorem 2(1) we
have

G2[γ] =

∫ T ′′

T ′

(∂xg)(t, γ(t)) · dγ(t) +

∫ T ′′

T ′

(∂tg)(t, γ(t))dt ∈ F∞ .

By the fundamental theorem of calculus we have G1[γ∆T,0
] = G2[γ∆T,0

] for any
broken line path γ∆T,0

. By Theorem 1 we get
∫

eiS[γ]/~G1[γ]F [γ]D[γ]

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

G1[γ∆T,0
]F [γ∆T,0

]

J
∏

j=1

dxj

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

G2[γ∆T,0
]F [γ∆T,0

]

J
∏

j=1

dxj

=

∫

eiS[γ]/~G2[γ]F [γ]D[γ] . �

Theorem 8. For any broken line path ζ : [0, T ] → Rd, we have the following:

(1) (DS)[γ][ζ] ∈ F∞.

(2) exp

(

i

~

(

S[γ + ζ] − S[γ]
)

)

∈ F∞. (The estimates of Theorems 5, 16, 17

depend on ~.)

Theorem 9. (Translation). Let T be sufficiently small. For any F [γ] ∈ F∞ and

any broken line path η : [0, T ] → Rd,
∫

γ(0)=x0,γ(T )=x

eiS[γ+η]/~F [γ +η]D[γ] =

∫

γ(0)=x0+η(0), γ(T )=x+η(T )

eiS[γ]/~F [γ]D[γ] .

Corollary. (Invariance under translation). Let T be sufficiently small. For any

F [γ] ∈ F∞ and any broken line path η : [0, T ] → Rd with η(0) = η(T ) = 0,
∫

γ(0)=x0, γ(T )=x

eiS[γ+η]/~F [γ + η]D[γ] =

∫

γ(0)=x0, γ(T )=x

eiS[γ]/~F [γ]D[γ] .

Proof of Theorem 9. By Theorem 8(1) and Theorem 2(1), (2) we have

exp

(

i

~

(

S[γ + η] − S[γ]
)

)

F [γ + η] ∈ F∞ .

By Theorem 1

∫

γ(0)=x0, γ(T )=x

eiS[γ+η]/~F [γ + η]D[γ] = lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2

×

∫

RdJ

eiS[γ∆T,0
]/~ · ei

(

S[γ∆T,0
+η]−S[γ∆T,0

]
)

/~
F [γ∆T,0

+ η]
J
∏

j=1

dxj

11
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exists. Choose ∆T,0 which contains all time where the broken line path η breaks.
Set η(Tj) = yj , j = 0, 1, . . . , J, J + 1. Since γ∆T,0

+ η is the broken line path
which connects (Tj , xj + yj) and (Tj−1, xj−1 + yj−1) by a line segment for j =
1, 2, . . . , J, J + 1, we can write
∫

γ(0)=x0, γ(T )=x

eiS[γ+η]/~F [γ + η]D[γ]

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS∆T,0
(xJ+1+yJ+1,xJ+yJ ,...,x1+y1,x0+y0)/~

×F∆T,0
(xJ+1 + yJ+1, xJ + yJ , . . . , x1 + y1, x0 + y0)

J
∏

j=1

dxj .

By the change of variables: xj + yj → xj , j = 1, 2, . . . , J , we have
∫

γ(0)=x0, γ(T )=x

eiS[γ+η]/~F [γ + η]D[γ]

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS∆T,0
(xJ+1+yJ+1,xJ ,...,x1,x0+y0)/~

×F∆T,0
(xJ+1 + yJ+1, xJ , . . . , x1, x0 + y0)

J
∏

j=1

dxj

=

∫

γ(0)=x0+η(0), γ(T )=x+η(T )

eiS[γ]/~F [γ]D[γ] . �

Theorem 10. (Taylor’s expansion formula). Let T be sufficiently small. For any

F [γ] ∈ F∞ and any broken line path η : [0, T ] → Rd,

∫

eiS[γ]/~F [γ + η]D[γ] =

L
∑

l=0

1

l!

∫

eiS[γ]/~(DlF )[γ][η] · · · [η]D[γ]

+

∫ 1

0

(1 − θ)L

L!

∫

eiS[γ]/~(DL+1F )[γ + θη][η] · · · [η]D[γ]dθ .

(2.9)

Proof of Theorem 10. Using Taylor’s expansion formula of (2.4) with respect to
0 ≤ θ ≤ 1 we have

F [γ + η] −

L
∑

l=0

1

l!
(DlF )[γ][η] · · · [η] =

∫ 1

0

(1 − θ)L

L!
(DL+1F )[γ + θη][η] · · · [η]dθ

for any broken line path γ. By (2.3) we get (2.9). �

Theorem 11. (Integration by parts). Let T be sufficiently small. For any F [γ] ∈
F∞ and any broken line path η : [0, T ] → Rd with η(0) = η(T ) = 0,

∫

eiS[γ]/~(DF )[γ][η]D[γ] = −
i

~

∫

eiS[γ]/~(DS)[γ][η]F [γ]D[γ] .

12
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Proof of Theorem 11. Choose ∆T,0 which contains all time where the broken
line path η breaks. Set γ∆T,0

(Tj) = xj and η(Tj) = yj , j = 0, 1, . . . , J, J + 1. By
Theorem 9 with η(0) = η(T ) = 0 we have

0 = lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2

×

∫

RdJ

(

eiS[γ∆T,0
+η]/~

F [γ∆T,0
+ η] − eiS[γ∆T,0

]/~
F [γ∆T,0

]
)

J
∏

j=1

dxj

= lim
|∆T,0|→0

∫ 1

0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
+θη]/~

×

(

i

~
(DS)[γ∆T,0

+ θη][η]F [γ∆T,0
+ θη] + (DF )[γ∆T,0

+ θη][η]

) J
∏

j=1

dxjdθ .

Note (2.4) and y0 = yJ+1 = 0. By the change of variables: xj + θyj → xj ,
j = 1, 2, . . . , J , we have

0 = lim
|∆T,0|→0

∫ 1

0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

×

(

i

~
(DS)[γ∆T,0

][η]F [γ∆T,0
] + (DF )[γ∆T,0

][η]

) J
∏

j=1

dxjdθ

=
i

~

∫

eiS[γ]/~(DS)[γ][η]F [γ]D[γ] +

∫

eiS[γ]/~(DF )[γ][η]D[γ] . �

Theorem 12. (Orthogonal transformation). Let T be sufficiently small. For any

F [γ] ∈ F∞ and any d × d orthogonal matrix Q,

∫

γ(0)=x0, γ(T )=x

eiS[Qγ]/~F [Qγ]D[γ] =

∫

γ(0)=Qx0, γ(T )=Qx

eiS[γ]/~F [γ]D[γ] .

Corollary. (Invariance under orthogonal transformation). Let T be sufficiently

small. For any F [γ] ∈ F∞, any d × d orthogonal matrix Q and any broken line

path η : [0, T ] → Rd,

∫

γ(0)=0, γ(T )=0

eiS[Qγ+η]/~F [Qγ + η]D[γ] =

∫

γ(0)=η(0), γ(T )=η(T )

eiS[γ]/~F [γ]D[γ] .

Proof of Theorem 12. Since Q is an orthogonal matrix, we can write

S[Qγ] =

∫ T

0

(

1

2

∣

∣

∣

∣

dγ

dt

∣

∣

∣

∣

2

− V
(

t, Qγ(t)
)

)

dt .

13
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For any integer k ≥ 2, there exists a positive constant A′
k such that |∂α

x V (t, Qx)| ≤
A′

k for any multi-index α with |α| = k. By Theorem 1

∫

γ(0)=x0, γ(T )=x

eiS[Qγ]/~F [Qγ]D[γ]

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[Qγ∆T,0
]/~

F [Qγ∆T,0
]

J
∏

j=1

dxj

exists. Qγ∆T,0
is the broken line path which connects (Tj , Qxj) and (Tj−1, Qxj−1)

by a line segment for j = 1, 2, . . . , J, J + 1. By the change of variables: Qxj → xj ,
j = 1, 2, . . . , J and | det Q| = 1, we have

∫

γ(0)=x0, γ(T )=x

eiS[Qγ]/~F [Qγ]D[γ]

= lim
|∆T,0|→0

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS∆T,0
(QxJ+1,xJ ,...,x1,Qx0)/~

×F∆T,0
(QxJ+1, xJ , . . . , x1, Qx0)

J
∏

j=1

dxj

=

∫

γ(0)=Qx0, γ(T )=Qx

eiS[γ]/~F [γ]D[γ] . �

3 The details about the convergence in Theorem 1

For simplicity, we set

xL,l = (xL, xL−1, . . . , xl) for any 0 ≤ l ≤ L ≤ J + 1,
m+ = max(m, 0) for any integer m.

Let T satisfy 4A2dT 2 < 1 where A2 is a constant in Assumption 1. Then we can
define x

†
J,1 = x

†
J,1(xJ+1, x0) by

(∂xJ,1
S∆T,0

)(xJ+1, x
†
J,1, x0) = 0 .

For any given function f = f (xJ+1, xJ,1, x0) let f † be the function obtained by

pushing xJ,1 = x
†
J,1 into f , i.e.

f † = f †(xJ+1, x0) = f(xJ+1, x
†
J,1, x0).

Then we have

γ
†
∆T,0

= γ∆T,0
(t, xJ+1, x

†
J,1, x0),

S[γ†
∆T,0

] = S
†
∆T,0

(xJ+1, x0) = S∆T,0
(xJ+1, x

†
J,1, x0),

F [γ†
∆T,0

] = F
†
∆T,0

(xJ+1, x0) = F∆T,0
(xJ+1, x

†
J,1, x0).

14
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We define D∆T,0
(xJ+1, x0) by

D∆T,0
(xJ+1, x0) = det

(

∂2
xJ,1

S∆T,0

)†

×

(

∏J+1
j=1 tj

TJ+1

)d

.

Furthermore we define the remainder term Υ∆T,0
(~, xJ+1, x0) by

J+1
∏

j=1

(

1

2πi~tj

)d/2 ∫

RdJ

eiS[γ∆T,0
]/~

F [γ∆T,0
]

J
∏

j=1

dxj

=

(

1

2πi~T

)d/2

e
iS[γ†

∆T,0
]/~
(

D∆T,0
(x, x0)

−1/2F [γ†
∆T,0

] + ~Υ∆T,0
(~, x, x0)

)

.

We can prove the convergence of (2.3) in the following order.

Theorem 13. (Convergence of Path). Let 4A2dT 2 < 1
2 . Then, for any multi-

indices α, β, there exist positive constants Cα,β, C ′
α,β independent of ∆T,0 such

that
∥

∥

∥
∂α

x ∂β
x0

γ
†
∆T,0

∥

∥

∥
≤ Cα,β (1 + |x| + |x0|)

(1−|α+β|)+ ,
∥

∥

∥
∂α

x ∂β
x0

(

γ
†
∆T,0

− γcl
)∥

∥

∥
≤ C ′

α,β |∆T,0|T (1 + |x| + |x0|) ,

where γcl = γcl(t, x, x0) is the classical path with γcl(0) = x0 and γcl(T ) = x, and

‖γ‖ = max0≤t≤T |γ(t)|.

Theorem 14. (Convergence of Phase). Let 4A2dT 2 < 1
2 . Then, for any multi-

indices α, β, there exist positive constants Cα,β, C ′
α,β independent of ∆T,0 such

that
∣

∣

∣

∣

∂α
x ∂β

x0

(

S
†
∆T,0

(x, x0) −
(x − x0)

2

2T

)
∣

∣

∣

∣

≤ Cα,βT (1 + |x| + |x0|)
(2−|α+β|)+ ,

∣

∣

∣
∂α

x ∂β
x0

(

S
†
∆T,0

(x, x0) − S(T, x, x0)
)∣

∣

∣
≤ C ′

α,β |∆T,0|
2T (1 + |x| + |x0|)

1+(1−|α+β|)+ ,

where S(T, x, x0) = S[γcl] is the action along the classical path γcl with γcl(0) = x0

and γcl(T ) = x.

Theorem 15. (Convergence of Main term 1). Let T be sufficiently small. Then,

for any multi-indices α, β, there exist positive constants Cα,β, C ′
α,β independent of

∆T,0 such that

∣

∣∂α
x ∂β

x0

(

D∆T,0
(x, x0) − 1

)∣

∣ ≤ Cα,βT 2 ,
∣

∣∂α
x ∂β

x0

(

D∆T,0
(x, x0) − D(T, x, x0)

)∣

∣ ≤ C ′
α,β |∆T,0|T (1 + |x| + |x0|) ,

where D(T, x, x0) is the Morette–Van Vleck determinant.
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Theorem 16. (Convergence of Main term 2). Let T be sufficiently small. Let

F [γ] ∈ F . Then, for any multi-indices α, β, there exist positive constants Cα,β,

C ′
α,β independent of ∆T,0 such that
∣

∣

∣
∂α

x ∂β
x0

F
†
∆T,0

(x, x0)
∣

∣

∣
≤ Cα,β (1 + |x| + |x0|)

m
,

∣

∣

∣
∂α

x ∂β
x0

(

F
†
∆T,0

(x, x0) − F (T, x, x0)
)∣

∣

∣
≤ C ′

α,β |∆T,0|T (1 + |x| + |x0|)
m+1

,

with a function F (T, x, x0). Furthermore, if the domain of F [γ] is continuously

extended to C([0, T ] → Rd) with respect to the norm ‖γ‖ = max0≤t≤T |γ(t)|, then

F (T, x, x0) = F [γcl].

Theorem 17. (Convergence of Remainder term). Let T be sufficiently small. Let

F [γ] ∈ F . Then, for any multi-indices α, β, there exist positive constants Cα,β,

C ′
α,β independent of ∆T,0 and ~ such that
∣

∣∂α
x ∂β

x0
Υ∆T,0

(~, x, x0)
∣

∣ ≤ Cα,βT
(

U + T 2
)

(1 + |x| + |x0|)
m

,

∣

∣∂α
x ∂β

x0

(

Υ∆T,0
(~, x, x0) − Υ(~, T, x, x0)

)∣

∣ ≤ C ′
α,β |∆T,0|(U + T 2)(1 + |x| + |x0|)

m+1

with a function Υ(~, T, x, x0).

4 Assumption 2’ by ‘piecewise classical paths’

As a remark on Assumption 2, we state Assumption 2’ under the time slicing
approximation by ‘piecewise classical paths’.

Let γcl be the classical path with γcl(0) = x0 and γcl(T ) = x, i.e. γcl satisfies
the Euler’s equation

d2

dt2
γcl(t) − (∂xV )(t, γcl(t)) = 0 .

For any division ∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0, let

γ∆T,0
= γ∆T,0

(t, xJ+1, xJ , . . . , x1, x0)

be the ‘piecewise classical path’ which connects (Tj , xj) and (Tj−1, xj−1) by a clas-
sical path for any j = 1, 2, . . . , J + 1. Set

S[γ∆T,0
] = S∆T,0

(xJ+1, xJ , . . . , x1, x0) ,

F [γ∆T,0
] = F∆T,0

(xJ+1, xJ , . . . , x1, x0) .

Assumption 2’ Let m and U be non-negative integers and uj , j = 1, 2, . . . , J, J +1

be non-negative parameters depending on ∆T,0 such that
∑J+1

j=1 uj ≤ U < ∞. For
any non-negative integer M , there exists a positive constant CM such that for any
division ∆T,0, any |αj | ≤ M , j = 0, 1, . . . , J, J + 1, and any 1 ≤ k ≤ J ,
∣

∣

∣

∣

(

J+1
∏

j=0

∂αj

xj

)

F∆T,0
(xJ+1, xJ , . . . , x1, x0)

∣

∣

∣

∣

≤ (CM )J+1

(

1 +
J+1
∑

j=0

|xj |

)m

,

∣

∣

∣

∣

(

J+1
∏

j=0

∂αj

xj

)

∂xk
F∆T,0

(xJ+1, xJ , . . . , x1, x0)

∣

∣

∣

∣

≤ (CM )J+1(uk+1 + uk)

(

1 +
J+1
∑

j=0

|xj |

)m

.
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The class F ′ of functionals F [γ] defined by Assumption 2’ also satisfies Theorem
1, Theorem 2(1) and Theorems 3, 4, 5, 6, 7. Furthermore, the convergence of the
time slicing approximation by ‘piecewise classical paths’ is much sharper than the
convergence of the time slicing approximation by broken line paths. For the details,
see D. Fujiwara and N. Kumano-go [11, 12]. In [12], D. Fujiwara wrote down the
second term of the semi-classical asymptotic expansion of Feynman path integrals
with the integrand F [γ] of polynomial growth.
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