
Design of high-order short-time approximations as a

problem of matching the covariance of a Brownian motion

Cristian Predescu

Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry,

University of California, Berkeley, California 94720

One of the outstanding problems in the numerical discretization of the Feynman–
Kac formula calls for the design of arbitrary-order short-time approximations that are
constructed in a stable way, yet only require knowledge of the potential function. In
essence, the problem asks for the development of a functional analogue to the Gauss
quadrature technique for one-dimensional functions. In PRE 69 (2004) 056701, it has
been argued that the problem of designing an approximation of order ν is equivalent to
the problem of constructing discrete-time Gaussian processes that are supported on finite-
dimensional probability spaces and match certain generalized moments of the Brownian
motion. Since Gaussian processes are uniquely determined by their covariance matrix,
it is tempting to reformulate the moment-matching problem in terms of the covariance
matrix alone. Here, we show how this can be accomplished.
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1 Introduction

Since its introduction, the Feynman–Kac formula [1–3] has played a funda-
mental role in the development of numerical algorithms capable of accounting for
the physical properties of quantum systems made up of distinguishable particles.
When utilized in tandem with the Monte Carlo integration technique, a powerful
method is obtained: the path-integral Monte Carlo [4], which is capable of probing
the quantum effects without any untestable approximations. The Feynman–Kac
formula expresses the density matrix of a thermodynamic system as the expected
value of a functional of the Brownian bridge

ρ(x, x′;β) =
1√

2πσ2
e−(x′

−x)2/2σ2

E exp

{

−β
∫ 1

0

V
[

xr(u) + σB0
u

]

du

}

. (1)

A second formulation of the Feynman–Kac formula is in terms of the full Brownian
motion and reads

〈

x
∣

∣e−βH
∣

∣ψ
〉

≡
∫

R

ρ(x, x′;β)ψ(x′)dx′ =

= E

[

exp
(

−β
∫ 1

0

V (x+ σBu)du
)

ψ(x + σB1)

]

,

(2)

where ψ(x) is any square integrable function. In the above, ρ(x, x′;β) is the density
matrix for a one-dimensional canonical system characterized by the inverse tem-
perature β = 1/(kBT ) and made up of identical particles of mass m0 moving in the
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potential V (x). The stochastic element that appears in Eq. (1), {B0
u, 0 ≤ u ≤ 1}, is

a so-called standard Brownian bridge, defined as follows: if {Bu, u ≥ 0} is a stan-
dard Brownian motion starting at zero, then the Brownian bridge is the stochastic
process {Bu, 0 ≤ u ≤ 1|B1 = 0}, i.e., a Brownian motion conditioned on the
event B1 = 0. As is well known, a Brownian bridge can be realized as the process
{Bu − uB1, 0 ≤ u ≤ 1} [5]. To complete the description of Eqs. (1) and (2), we
have xr(u) = x+ (x′ − x)u and σ = (~2β/m0)

1/2.
A problem of direct interest to the chemical physicist is the development of

approximations supported on finite-dimensional probability spaces that have fast
convergence for smooth enough potentials, as measured against the number of eval-
uations of the potential function. Most desirably, such approximations should uti-
lize only the potential function in their construction. For reasons of stability, they
should converge, perhaps at a slower rate, for all continuous potentials that are
bounded from below. Until recently, the fastest method available (as order of con-
vergence) has been the trapezoidal Trotter discrete path integral method. The
technique is usually derived by means of the Lie–Trotter product formula and
an appropriate short-time high-temperature approximation. The formal asymp-
totic convergence of the trapezoidal Trotter method and of related techniques was
extensively studied by Suzuki [6, 7] for bounded operators and by Ichinose and
Tamura [8, 9], among others. In particular, results of the last two authors [9]
show that the symmetric Trotter–Suzuki approximation has optimal convergence
O(1/n2) for sufficiently smooth potentials as far as pointwise convergence of their
integral kernels is concerned. This type of convergence is also implied in the present
paper. On the other hand, the non-existence theorem of Suzuki [6] makes it implau-
sible that faster convergence can be achieved by utilizing short-time approximations
constructed as functions of the kinetic and potential operators.

Recently, a more general approach has been put forward by the present au-
thor [10], who argued that, for sufficiently smooth potentials, there might exist
direct short-time high-temperature approximations of arbitrary polynomial conver-
gence order. Of course, these short-time approximations are generally not functions
of the kinetic and potential operators. The construction of such approximations is
based upon an “experimental” theorem on the pointwise convergence of the inte-
gral kernels of the Lie–Trotter product formulas. Although not rigorously proved,
this theorem seems quite plausible. The short-time approximations considered are
based on carefully designed finite-dimensional approximations to the Brownian mo-
tion entering the Feynman–Kac formula. Basically, the Brownian motion is replaced
by some discrete-time Gaussian process that is supported on a finite-dimensional
probability space. A set of functional equations involving some generalized mo-
ments of the Gaussian process have been shown to control the order of convergence
ν. Because the number of equations increases in an exponential fashion with ν,
explicit solutions have been obtained only for ν = 3, 4.

In the present work, we exploit the fact that both the Brownian motion and
its replacement are Gaussian processes and are, therefore, uniquely determined by
their covariance matrices. We thus show how to express the functional equations
in terms of the covariance matrices alone. Hopefully, the new equations will prove
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easier to utilize in a complete mathematical proof of the existence of short-time
approximations of arbitrary order. In the appendix, we give a general convergence
theorem regarding the construction of finite-dimensional discrete approximations
to the Feynman–Kac formula.

2 Statement of the moment-matching problem

Perhaps one of the oldest techniques for simulating a Brownian bridge (or Brow-
nian motion) is via random series. As such, let {λk(τ)}k≥0 be any orthonormal basis
in L2[0, 1] such that λ0(τ) ≡ 1, let

Λk(u) =

∫ u

0

λk(τ)dτ for k ≥ 0

and let ā := {a0, a1, . . .} be a sequence of independent identically distributed stan-
dard normal random variables. By the Ito–Nisio theorem [11], the random series
∑

k≥0 akΛk(u) is uniformly convergent almost surely and equal in distribution with
a standard Brownian motion Bu starting at zero. By the construction of a Brow-
nian bridge as the process {Bu − uB1, 0 ≤ u ≤ 1} and the fact that Λ0(u) = u, it
follows that

∑

k≥1 akΛk(u) =
∑

k≥0 akΛk(u) − a0u is equal in distribution with a
standard Brownian bridge. If Ω is the set of all sequences ā := {a0, a1, . . .} and if

dP [ā] =

∞
∏

k=0

dµ(ak) with dµ(z) = (2π)−1/2 exp(−z2/2)dz

is the probability measure on Ω associated with the sequence of independent random
variables ā := {a0, a1, . . .}, then the Feynman–Kac formula given by Eq. (1) reads

ρ(x, x′;β) = ρfp(x, x
′;β)

∫

Ω

dP [ā] exp

{

−β
∫ 1

0

V
[

xr(u) + σ
∞
∑

k=1

akΛk(u)
]

du

}

.

(3)
Here, ρfp(x, x

′;β) = exp[−(x′ − x)2/2σ2]/(2πσ2)1/2 is recognized as the density
matrix of a free particle. The alternative formulation given by Eq. (2) becomes

ρ(x, x′;β) =

∫

Ω

dP [ā] exp

{

−β
∫ 1

0

V
[

x+ σ
∞
∑

k=0

akΛk(u)
]

du

}

ψ(x+ σa0) . (4)

Eqs. (3) and (4) are appropriately called random series representations of the
Feynman–Kac formula in the chemical-physics literature [12, 13].

Eq. (3) is suggestive of some sort of numerical approximation to the Feynman–
Kac formula, namely

ρn(x, x′;β) = ρfp(x, x
′;β)

∫

Ω

dP [ā] exp

{

−β
nq
∑

i=1

wiV
[

xr(θi) + σ
nν
∑

k=1

akΛk(θi)
]

}

.

(5)
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Here, the non-negative weights wi (we assume
∑

i wi = 1) and the knots θi define
a quadrature technique on the interval [0, 1]. It goes without saying that such
approximations are convergent as nq → ∞ and nν → ∞ under mild assumptions
for the potential V (x): boundness from below and continuity. In order not to
disrupt from the flow of the presentation, we give the simple proof in the appendix
(see Corollary 1). Thus, we are in no shortage of quadrature formulas. We just
want the faster ones.

Another utilization of Eq. (5) is as a short-time approximation in a Lie–Trotter
product of the form

ρn(x, x′;β) =

∫

R

dx1 . . .

∫

R

dxn ρ
(ν)
0

(

x, x1;
β

n+ 1

)

. . . ρ
(ν)
0

(

xn, x
′;

β

n+ 1

)

. (6)

The gain in interpreting Eq. (5) as a short-time approximation is that the re-
quirement that the functions {Λk(u); 1 ≤ k ≤ nν} are constructed according to the
Ito–Nisio prescription can be relaxed. We denote this by utilizing a tilde overscript,
so that the short-time approximation reads

ρ
(ν)
0 (x, x′;β) = ρfp(x, x

′;β)

∫

R

dµ(a1) . . .

∫

R

dµ(anν
)×

× exp

{

−β
∫ 1

0

V
[

xr(u) + σ
nν
∑

k=1

akΛ̃k(u)
]

dω(u)

}

.

(7)

The functions {Λ̃k(u); 1 ≤ k ≤ nν} are required to be continuous (that is, bounded
on the quadrature knots) and vanish at both end points. At this moment, we
should emphasize that this special choice of short-time approximation is made
while bearing in mind its usefulness in Monte Carlo simulations. Due to some
special properties, especially the availability of the fast sampling algorithm [14],
the subsequence of Lie–Trotter products with n = 2k − 1 is of utmost practical
interest. A simple proof of the convergence of this Lie–Trotter subsequence is given
in the appendix (see Corollary 2), again for continuous and bounded from below
potentials.

A second requirement that we ask of the construction given by Eq. (7) has
to do with the symmetry of the density matrix, which should reflect itself in the
symmetry of the short-time approximation. As such, we require that the discrete
probability measure

dω(u) =

nq
∑

i=1

wiδ(u− θi)du (8)

defining the quadrature technique on [0, 1] must be symmetric about 1
2 . Also, the fi-

nite dimensional process
∑nν

k=1 akΛ̃k(u) must be invariant under the transformation
u′ = 1− u. That is, we require the equality in distribution

nν
∑

k=1

akΛ̃k(u)
d
=

nν
∑

k=1

akΛ̃k(1 − u) . (9)
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The time symmetry of the process
∑nν

k=1 akΛ̃k(u) can be enforced, for example,

by restricting the functions {Λ̃k(u); 1 ≤ k ≤ nν} to the class of symmetric and
antisymmetric functions. To understand these requirements, notice that the Her-
miticity of the density matrix stems from the symmetry of the Lebesgue measure
on [0, 1] as well as from the time symmetry of the standard Brownian bridge B0

u,
i.e., the fact that {B0

1−u, 0 ≤ u ≤ 1} is a Brownian bridge equal in distribution

to {B0
u, 0 ≤ u ≤ 1}. Because the random sum

∑nν

k=1 akΛ̃k(u) is intended as a
replacement for the Brownian bridge, it is convenient to introduce the notations

B̃0
u ≡

nν
∑

k=1

akΛ̃k(u) and B̃u ≡ a0u+ B̃0
u for 0 ≤ u ≤ 1 . (10)

Thus, the Brownian bridge (motion) is approximated by a simple Gaussian process
that is supported on a finite-dimensional probability space. Moreover, only the
values of the process for the discrete times represented by the quadrature knots θ1,
θ2, . . . , θnq

are relevant for the construction of the short-time approximation.
The symbol (ν) appearing as a superscript in Eq. (7) denotes the order of

convergence of the short-time approximation. This is defined as the largest ν for
which the so-called convergence operator Tνψ expressed by

(Tνψ)(x) = lim
β→0+

∫

R

[

ρ
(ν)
0 (x, x′;β) − ρ(x, x′;β)

]

ψ(x′) dx′

βν+1
. (11)

is well defined at least on the class of infinitely differentiable and compactly sup-
ported functions ψ(x). In Ref. [10], it is claimed but not rigorously demonstrated
that

lim
n→∞

(n+ 1)ν [ρn(x, x′;β) − ρ(x, x′;β)] = βν+1

∫ 1

0

〈

x
∣

∣

∣
e−θβHTνe−(1−θ)βH

∣

∣

∣
x′

〉

dθ ,

(12)
where ρn(x, x′;β) is defined by Eq. (6). A rigorous proof of Eq. (12) is beyond
the mathematical abilities of the present author. Based on the more or less formal
arguments presented in the aforementioned reference, it is very likely that the
statement is true. The author would be very grateful to the mathematically more
inclined reader who may want to investigate the problem and prove or disprove the
assertion (again, the case n = 2k − 1 suffices for all practical purposes).

Nonetheless, Eq. (12) states that the convergence of the Lie–Trotter product
is as fast as 1/nν , which explains the nomenclature regarding the order of conver-
gence. We should emphasize that merely the existence of the convergence operator
expressed by Eq. (11) sets some constraints on the smoothness of the potential
function. The natural class of potentials to study the problem of constructing
short-time approximations of arbitrary order is the class of continuously and in-
finitely differentiable functions for which

1√
2πα

∫

R

e−z2/(2α)
∣

∣

∣
V (k)(x+ z)

∣

∣

∣

j

dz <∞ , (13)
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for all x ∈ R and α > 0 and for all integers k ≥ 0 and j ≥ 1. This condition is
necessary in order to ensure that we recover the original potential V (x), derivatives
V (k)(x), or products of such functions from their Gaussian transforms, in the limit
that α → 0 (see Theorem 3 of Ref. [15]). We mention that this class of potentials
does not include some pathological infinitely differentiable and bounded from below
potentials such as exp(x4) or even cos[exp(x4)].

In these conditions, according to Theorem 4 of Ref. [10], the convergence oper-
ator Tν exists if and only if

E
[

(B1)
j1 (M0)

j2(M1)
j3 . . . (M2µ−2)

j2µ
]

= E

[

(B̃1)
j1(M̃0)

j2 (M̃1)
j3 . . . (M̃2µ−2)

j2µ

]

(14)

for all 2µ-tuples of non-negative integers (j1, j2, . . . , j2µ) such that
∑2µ

k=1 kjk = 2µ

and 1 ≤ µ ≤ ν. The random variables Mk and M̃k are defined by

Mk ≡
∫ 1

0

(Bu)kdu and M̃k ≡
∫ 1

0

(B̃u)kdω(u) =

nq
∑

i=1

wi(B̃θi
)k , (15)

respectively.

3 Reformulation of the generalized moment conditions in terms of

covariance matrices

Since they are Gaussian processes with continuous paths, the Brownian motion
and its approximation are uniquely determined by the covariance matrices

γ(u, τ) = E(BuBτ ) = uτ +

∞
∑

k=1

Λk(u)Λk(τ) = min{u, τ} (16)

and

γ̃(u, τ) = E(B̃uB̃τ ) = uτ +

nν
∑

k=1

Λ̃k(u)Λ̃k(τ) , (17)

respectively. As such, at least in principle, the relations given by Eq. (14) can be
formulated in terms of these covariance matrices alone. In this section, we show
how this can be done.

Let J2µ denote the set of solutions of the Diophantine equation
∑2µ

k=1 kjk = 2µ.
For each ζ ∈ J2µ, we define the integer

d(ζ) = j3 + j4 + · · · + j2µ (18)

and
n(ζ) = [j1 + j3 + 2j4 + · · · + (2µ− 2)j2µ] = µ− j2 − d(ζ) , (19)

respectively. We also define the differentiation functional Dζ acting on the space of
infinitely differentiable functions f(λ0, λ1, . . . , λd(ζ)) that associates to each f the
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following partial derivative evaluated at the origin

Dζf ≡ ∂j1

∂λj1
0

∂j3

∂λ1∂λ2 · · · ∂λj3

∂2j4

∂λ2
j3+1∂λ

2
j3+2 · · · ∂λ2

j3+j4

· · ·

· · · ∂(2µ−2)j2µ

∂λ2µ−2
d(ζ)−j2µ+1∂λ

2µ−2
d(ζ)−j2µ+2 · · ·∂λ

2µ−2
d(ζ)

f(0, 0, . . . , 0) .
(20)

The differential order of Dζ is j1 + j3 + 2j4 + · · · + (2µ− 2)j2µ = 2n(ζ).
The reader will understand the need for this rather cumbersome notation short-

ly. Going back to Eq. (14), let us notice that the equality

M0 =

∫ 1

0

1du = 1 =

∫ 1

0

1dω(u) = M̃0

means that the factors containing M0 and M̃0 cancel out. Next, we utilize the
identities

(B1)
j1 = j1!

dj1

dλj1
eλB1

∣

∣

∣

λ=0
and Mk = k!

∫ 1

0

du
dk

dλk
eλBu

∣

∣

∣

λ=0

to express the first factor in Eq. (14) as

j1!(1!)j3 · · ·
(

(2µ− 2)!
)j2µ

E

[(

Dj1

dλj1
eλB1

∣

∣

∣

λ=0

) (
∫ 1

0

du
d

dλ
eλBu

∣

∣

∣

λ=0

)j3

· · ·

· · ·
(

∫ 1

0

du
d2µ−2

dλ2µ−2
eλBu

∣

∣

∣

λ=0

)j2µ ]

.

(21)

Expanding the parenthesis and interchanging the order of integration and differen-
tiation, we obtain the result

j1!(1!)j3 · · ·
(

(2µ− 2)!
)j2µ

Dζfζ ,

where

fζ(λ0, λ1, . . . , λd(ζ)) =

∫ 1

0

du1 · · ·
∫ 1

0

dud(ζ)E exp

(

d(ζ)
∑

i=0

λiBui

)

and u0 = 1.
To evaluate the function fζ , one may utilize any random series and compute

E exp

(

d(ζ)
∑

j=0

λiBui

)

= E exp

(

d(ζ)
∑

i=0

λi

∞
∑

k=0

akΛk(ui)

)

=

=

∞
∏

k=0

{

∫

R

dµ(z) exp

(

z
d(ζ)
∑

i=0

λiΛk(ui)

)

}

=

∞
∏

k=0

exp

{

1

2

[

d(ζ)
∑

i=0

λiΛk(ui)

]2
}

.
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The last term equals

exp

{

1

2

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλj

(

∞
∑

k=0

Λk(ui)Λk(uj)

)

}

= exp

{

1

2

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλjγ(ui, uj)

}

.

Therefore, the explicit expression of the function fζ is

fζ(λ0, λ1, . . . , λd(ζ)) =

∫ 1

0

du1 · · ·
∫ 1

0

dud(ζ) exp

{

1

2

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλjγ(ui, uj)

}

.

We remind the reader that u0 = 1.
The function fζ can be replaced by some (1 + d(ζ))-dimensional polynomial of

degree 2n(ζ). Indeed, starting from the expansion

exp

{

1

2

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλjγ(ui, uj)

}

=
∞
∑

k=0

1

2kk!

[

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλjγ(ui, uj)

]k

one observes that, upon the action of Dζ , the differential order of which is 2n(ζ),
only the term with k = n(ζ) survives. The terms of lower degree are washed out
by the process of differentiation, whereas the terms of higher degrees cancel when
the respective derivatives are evaluated at the origin. Thus, the left-hand side of
Eq. (14) is given by the expression

j1!(1!)j3 · · ·
(

(2µ− 2)!
)j2µ

2n(ζ)n(ζ)!
Dζfζ , (22)

where

fζ(λ0, λ1, . . . , λd(ζ)) =

∫ 1

0

du1 · · ·
∫ 1

0

dud(ζ)

[

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλjγ(ui, uj)

]n(ζ)

. (23)

In an analogue manner, one demonstrates that the right-hand side of Eq. (14)
can be written as

j1!(1!)j3 · · ·
(

(2µ− 2)!
)j2µ

2n(ζ)n(ζ)!
Dζ f̃ζ , (24)

where

f̃ζ(λ0, λ1, . . . , λd(ζ)) =

∫ 1

0

dω(u1) · · ·
∫ 1

0

dω(ud(ζ))

[

d(ζ)
∑

i=0

d(ζ)
∑

j=0

λiλj γ̃(ui, uj)

]n(ζ)

.

(25)
Comparing Eqs. (22) and (24), we see that Eq. (14) is equivalent to the equality

Dζfζ = Dζ f̃ζ (26)

with fζ and f̃ζ defined by Eqs. (23) and (25), respectively.
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As Eqs. (22) and (24) show, the polynomials fζ and f̃ζ depend only on some
integers d(ζ) and n(ζ) that have the property

d(ζ) + n(ζ) ≤ µ ≤ ν .

Thus, a sufficient condition that the equality expressed by Eq. (26) holds for all
ζ ∈ J2µ and 1 ≤ µ ≤ ν is that the equality of polynomials

f̃n,d(λ0, λ1, . . . , λd) ≡
∫ 1

0

dω(u1) · · ·
∫ 1

0

dω(ud)

[

d
∑

i=0

d
∑

j=0

λiλj γ̃(ui, uj)

]n

=

=

∫ 1

0

du1 · · ·
∫ 1

0

dud

[

d
∑

i=0

d
∑

j=0

λiλjγ(ui, uj)

]n

≡ fn,d(λ0, λ1, . . . , λd)

(27)

holds for all integer d and n such that d + n ≤ ν. If d1 ≤ d2 then the polynomial
of dimension 1+ d1 is a particular case of the polynomial of dimension 1+ d2, with
the last d2−d1 lambda’s set to zero. Thus, it is enough to check the above equality
for the cases with d+ n = ν.

Let us show that checking the equality expressed by Eq. (27) for all integers n
and d such that n+d = ν is also a necessary condition. Notice that the polynomials
appearing in Eq. (27) are symmetric under the permutation of the variables λ1,
λ2, . . . , λd. This is due to the symmetry of the covariance matrices γ(u, τ) and
γ̃(u, τ). In these conditions, the differentiation functional given by Eq. (20) is
the most general differential expression of order 2n, provided that we let the index
ζ = {j1, j2, j3, j4, . . . , j2ν} lie in the set S that contains all possible indexes for which
j2 = 0, j3 + j4 + · · ·+ j2ν = d, and j1 + j3 + 2j4 + · · ·+ (2ν− 2)j2ν = 2n. Following
some permutation of the variables λ1, λ2, . . . , λd, any other differential expression
can be obtain from and, by the aforementioned symmetry of polynomials, is equal
to a differential expression of the type given by Eq. (20) for some γ ∈ S. Therefore,
the equality Dζfn,d = Dζ f̃n,d for all ζ ∈ S implies fn,d = f̃n,d. It remains to prove
that, as ζ spans J2ν , it also spans S. Clearly, any index ζ ∈ S has the property
j1 + 2j2 + 3j3 + · · · + 2νj2ν = 2(n+ d) = 2ν. Therefore, S ⊂ J2ν and the claim of
necessity is proved.

We summarize the results of the paper in the following proposition.

Proposition 1 A short-time approximation of the type given by Eq. (7) has con-
vergence order ν if and only if the equality of polynomials expressed by Eq. (27)
holds for all integers d and n such that d+ n = ν.

The above proposition can be utilized together with the multinomial formula
to generate the necessary conditions that the trial covariance matrix must satisfy
in order for a short-time approximation to have convergence order ν. Most likely,
more useful statements can be obtained by the mathematically more inclined reader.
Nevertheless, we have achieved our goal of formulating the conditions in terms of
the covariance matrices alone.

This work was supported in part by the National Science Foundation Grant No. CHE-

0345280 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical
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tract No. DE-AC02-05CH11231.

Appendix

In this appendix, we establish an easily provable theorem that is useful in many
situations and provides the basic mathematical background for the discretization
of the Feynman–Kac formula. We then utilize the theorem to demonstrate several
statements made in the text.

To begin with, let us formalize what we mean by quadrature rules. By a quadra-
ture scheme on [0, 1], we understand a sequence of pairs of vectors of variable lengths
qn, namely the weights {wn,1, wn,2, . . . , wn,qn

} and the knots 0 ≤ un,1 < un,2 <
· · · < un,qn

≤ 1, constructed such that the wn,i’s are non-negative for all 1 ≤ i ≤ qn

and n ≥ 1 and such that

lim
n→∞

qn
∑

i=1

wn,ih(un,i) =

∫ 1

0

h(u)du (28)

for all continuous functions h : [0, 1] → R. The mid-point, trapezoidal, Simpson,
and Gauss–Legendre rules are well-known examples of quadrature schemes. The
non-negativity of the weights is a stability requirement that simply says that it is
not all right to get a negative answer if a positive function is integrated.

Let {Sn(ω;u); 0 ≤ u ≤ 1}n≥1 be a family of random processes with continuous
paths supported on a probability space (Ω,F , P ) and such that Sn(ω;u) converges
to some limit B0

u(ω) uniformly in u, P -almost surely. Assume that the limit B0
u(ω)

is equal in distribution to a Brownian bridge. Given an arbitrary quadrature rule,
we can define a sequence of approximations to the density matrix by the prescription

ρn(x, x′;β) = ρfp(x, x
′;β)E exp

{

−β
qn
∑

i=1

wn,iV [xr(un,i) + σSn(ω;un,i)]

}

, (29)

for n ≥ 1. We shall call the above prescription the standard discretization of the
Feynman–Kac formula. The nomenclature is motivated by the following funda-
mental theorem.

Theorem 1 If V (x) is continuous and bounded from below, then the sequence
ρn(x, x′;β) is bounded by C(β)ρfp(x, x′;β), for some positive C(β) <∞, and

ρn(x, x′;β) → ρ(x, x′;β) , as n→ ∞ . (30)

Proof. Let V0 be a non-positive lower bound for V (x). Eq. (28) specialized for
h(x) = 1 says that the sequence

∑qn

i=1 wn,i is convergent, thus bounded, say by c >
0. Then the integrand of Eq. (29) is bounded from above by C(β) = exp(−cβV0)
and we have

ρn(x, x′;β) ≤ C(β)ρfp(x, x
′;β) . (31)
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The remainder of the theorem follows from the dominated convergence theorem
and the Feynman–Kac formula, as soon as we prove that

lim
n→∞

qn
∑

i=1

wn,iV [xr(un,i) + σSn(ω;un,i)] =

∫ 1

0

V [xr(u) + σB0
u(ω)]du , a.s. (32)

As such, let ω ∈ Ω be given. Since xr(u) + σB0
u(ω) is almost surely contin-

uous in u — as uniform limit of continuous functions xr(u) + σSn(ω;u) — it is
bounded by some constant M > 0. In fact, by uniform convergence, we have
|xr(u) + σSn(ω;u)| ≤ 2M for large enough n. Since V (x) is continuous, it is uni-
formly continuous on the compact set |x| ≤ 2M . Consequently, given ε > 0, there
is η > 0 such that |V (x)−V (y)| < ε whenever |x−y| < η. Nevertheless, by uniform
convergence,

∣

∣[xr(u) + σSn(ω;u)] −
[

xr(u) + σB0
u(ω)

]
∣

∣ < η

for large enough n and so,
∣

∣V [xr(u) + σSn(ω;u)] − V
[

xr(u) + σB0
u(ω)

]∣

∣ < ε .

Since
∑qn

i=1 wn,i < c, it follows that
∣

∣

∣

∣

∣

qn
∑

i=1

wn,iV [xr(un,i) + σSn(ω;un,i)] −
qn
∑

i=1

wn,iV
[

xr(un,i) + σB0
un,i

(ω)
]

∣

∣

∣

∣

∣

< cε .

(33)
By Eq. (28) and the continuity of V

[

xr(u) + σB0
u(ω)

]

as a function in u, we also
have

∣

∣

∣

∣

∣

∫ 1

0

V [xr(u) + σB0
u(ω)]du−

qn
∑

i=1

wn,iV
[

xr(un,i) + σB0
un,i

(ω)
]

∣

∣

∣

∣

∣

< ε (34)

for n sufficiently large. Combining Eqs. (33) and (34), we obtain
∣

∣

∣

∣

∣

qn
∑

i=1

wn,iV [xr(un,i) + σSn(ω;un,i)] −
∫ 1

0

V [xr(u) + σB0
u(ω)]du

∣

∣

∣

∣

∣

< (1 + c)ε .

Since ε is arbitrary, the almost sure convergence appearing in Eq. (32) is demon-
strated and the proof of the theorem is concluded. �

Observation. Because ρn(x, x′;β) is bounded by C(β)ρfp(x, x′;β), the dominated
convergence theorem and the above theorem also imply convergence in the strong
topology, that is,

∫

R

ρn(x, x′;β)ψ(x′)dx′ →
∫

R

ρ(x, x′;β)ψ(x′)dx′

for all square integrable ψ(x). In fact, by choosing the sequence of processes
Sn(ω, n) to be constant and equal in distribution to B0

u, Th. 1 produces various
versions of the Trotter convergence theorem for various quadrature rules.

As everywhere else in this paper, in the following, it is understood that the
potential V (x) is continuous and bounded from below.
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Corollary 1 If ρn(x, x′;β) is defined by Eq. (5), then ρn(x, x′;β) → ρ(x, x′;β), as
n→ ∞.

Proof. Follows from Th. 1 and the uniform convergence of the random series
∑

k≥1 akΛk(u) to a Brownian bridge, as guaranteed by the Ito–Nisio theorem. �

Corollary 2 If ρn(x, x′;β) is defined by Eq. (6), then ρ2k−1(x, x
′;β) → ρ(x, x′;β),

as k → ∞.

Observation. The proof we construct for the subsequence n = 2k − 1 is based on
a special form of the Lie–Trotter product that is called the Lévy–Ciesielski form.
The information from the paragraphs below is taken from Ref. [10]. In fact, for
n = 2k−1, any Lie–Trotter product can be put in a Lévy–Ciesielski form, as shown
in Ref. [14]. This form has important advantages when it comes to the Monte
Carlo implementation, such as fast computation of paths and fast sampling. For
this reason, we can restrict our attention to the subsequence n = 2k − 1, without
any loss of generality for actual applications.
Proof of the corollary. Let {al,j ; 1 ≤ l ≤ k, 1 ≤ j ≤ 2l−1} and {bl,j ; 1 ≤ l ≤
q, 1 ≤ j ≤ 2k} be two independent sets of i.i.d. standard normal variables. Let
{Fl,j(u); l ≥ 1, 1 ≤ j ≤ 2l−1} be the system of Schauder functions on the interval
[0, 1]. The Schauder functions are the primitives of the Haar L2([0, 1]) wavelet bases
and can be generated by contractions and translations as follows. Let F1,1(u) : R →
R be defined by

F1,1(u) =







u , u ∈ [0, 1/2] ,
1 − u , u ∈ (1/2, 1] ,

0 , elsewhere .
(35)

Then,
Fl,j(u) = 2−(l−1)/2F1,1(2

l−1u− j + 1) (36)

for all l ≥ 1 and 1 ≤ j ≤ 2l−1. Extend the functions {Λ̃l(u); 1 ≤ l ≤ nν} outside
the interval [0, 1] by setting them to zero [the same way the first Schauder function
F1,1(u) was extended to the whole real axis in Eq. (35)] and define

Gl,j(u) = 2−k/2Λ̃l(2
ku− j + 1) (37)

for 1 ≤ l ≤ nν and 1 ≤ j ≤ 2k.
Let dωk(u) denote the discrete measure associated with the quadrature scheme

specified by the nq2
k (not necessarily different) quadrature knots

u′i,j = 2−k(θi + j − 1) , 1 ≤ i ≤ nq , 1 ≤ j ≤ 2k (38)

and the corresponding weights

w′
i,j = 2−kwi . (39)

The new quadrature knots u′i,j are obtained by contractions and translations of the
original knots θi.
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With the convention that al,2l−1+1 = 0 and bl,2k+1 = 0 for all l ∈ 1, k, we have

ρn(x, x′;β)

ρfp(x, x′;β)
=

∫

R

da1,1 . . .

∫

R

dak,2k−1 (2π)
−n/2

exp

(

−1

2

k
∑

l=1

2l−1
∑

j=1

a2
l,j

)

×

×
∫

R

db1,1 . . .

∫

R

dbnν ,2k (2π)
−(n+1)nν/2

exp

(

−1

2

nν
∑

l=1

2k
∑

j=1

b2l,j

)

×

× exp

{

−β
∫ 1

0

V

[

xr(u) + σ
k
∑

l=1

al,[2l−1u]+1 Fl,[2l−1u]+1(u) +

+σ
nν
∑

l=1

bl,[2ku]+1Gl,[2ku]+1(u)

]

dωk(u)

}

, (40)

where [2l−1u] and [2ku] are the integer parts of 2l−1u and 2ku, respectively.
Let us verify that the sequence of discrete measures dωk(u) defines a quadrature

scheme. If h : [0, 1] → R is a continuous functions then, by its uniform continuity,
for any ε > 0, there is η > 0 such that |h(u) − h(τ)| < ε whenever |u − τ | < η.
Now, pick k large enough that 1/2k < η. The Lebesgue integral of h over [0, 1] can
be broken in 2k smaller parts over the intervals [(j − 1)/2k, j/2k], for 1 ≤ j ≤ 2k.
Since the length of these intervals is smaller than η, we have both

∣

∣

∣

∣

∣

∫ j/2k

(j−1)/2k

h(u)du− 2−kh(j/2k)

∣

∣

∣

∣

∣

< 2−kε (41)

and
∣

∣

∣

∣

∣

nq
∑

i=1

w′
i,jh

(

u′i,j
)

− 2−kh(j/2k)

∣

∣

∣

∣

∣

< 2−kε . (42)

The latter inequality is true because the points u′i,j are in the interval [(j −
1)/2k, j/2k] and because

nq
∑

i=1

w′
i,j = 2−k

nq
∑

i=1

wi = 2−k .

From Eqs. (41) and (42), we learn that

∣

∣

∣

∣

∣

∫ j/2k

(j−1)/2k

h(u)du−
nq
∑

i=1

w′
i,jh

(

u′i,j
)

∣

∣

∣

∣

∣

< 2 · 2−kε (43)

and, by summing over all j, we obtain

2k

∑

j=1

∣

∣

∣

∣

∣

∫ j/2k

(j−1)/2k

h(u)du−
nq
∑

i=1

w′
i,jh

(

u′i,j
)

∣

∣

∣

∣

∣

< 2ε . (44)
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The left-hand side of Eq. (44) is clearly larger than

∣

∣

∣

∣

∣

∣

2k

∑

j=1

[

∫ j/2k

(j−1)/2k

h(u)du−
nq
∑

i=1

w′
i,jh

(

u′i,j
)

]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

h(u)du−
∫ 1

0

h(u)dωk(u)

∣

∣

∣

∣

.

Since ε is arbitrary, it follows that

lim
k→∞

∫ 1

0

h(u)dωk(u) =

∫ 1

0

h(u)du

and since h is arbitrary, it follows that the sequence of discrete measures dωk(u)
defines a quadrature scheme.

The first part of the random series appearing in Eq. (40) is the Lévy–Ciesielski
series, which converges uniformly to a Brownian bridge. The corollary readily
follows from the result in the preceding paragraph and Th. 1, if we prove that the
tail series

Tk(b̄;u) =

nν
∑

l=1

bl,[2ku]+1Gl,[2ku]+1(u) (45)

converges to zero uniformly almost surely, as k → ∞ (in other words, if our cor-
rection term does not ruin the uniform convergence of the Lévy–Ciesielski series).
Let M > 0 be a common bound for the functions {Λ̃k(u); 1 ≤ k ≤ nν}. Then, with
the help of Eq. (37), we compute

(

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣

)4

≤ M4

22k
max

l,j
|bl,j |4 ≤ M4

22k

nν
∑

l=1

2k

∑

j=1

b4l,j .

Taking the expected value, we get

E

(

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣

)4

≤ M4

22k
(3nν2k) =

3nνM
4

2k
.

Now, Chebyshev’s inequality produces

P

(

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣ ≥ ε

)

≤ 1

ε4
E

(

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣

)4

≤ 3nνM
4

ε42k

and so,

∞
∑

k=1

P

(

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣ ≥ ε

)

≤ 3nνM
4

ε4

∞
∑

k=1

1

2k
=

3nνM
4

ε4
<∞ .

The first Borel–Cantelli lemma implies that

P

(

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣ ≥ ε i.o.

)

= 0 ,
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which means that, with probability one, there is a rank K ≥ 1 such that

max
0≤u≤1

∣

∣Tk(b̄;u)
∣

∣ < ε , ∀ k ≥ K .

Letting ε go to zero through the countable sequence εj = 1/j, we obtain the almost
sure uniform convergence to zero of the tail series Tk(b̄;u). The proof of the corollary
is concluded. �
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