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The Wiener path integral splits the net diffusion flux into infinite unidirectional fluxes,
whose difference is the classical diffusion flux. The infinite unidirectional flux is an artifact
of the diffusion approximation to Langevin’s equation, an approximation that fails on
time scales shorter than the relaxation time 1/γ. The probability of one-dimensional
Brownian trajectories that cross a point in one direction per unit time ∆t equals that
of Langevin trajectories if γ∆t = 2. This result is relevant to Brownian and Langevin
dynamics simulation of particles in a finite volume inside a large bath. We describe the
sources of new trajectories at the boundaries of the simulation that maintain fixed average
concentrations and avoid the formation of spurious boundary layers.
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1 Introduction

The simulation of a test volume in an ionic solution is an important field of
chemical physics [1]–[7]. Such a simulation is necessarily limited to a relatively
small number of particles, due to computational difficulties. Computer simulations
of diffusing particles, such as ions in solution, raise the question of connecting a
small discrete simulation volume to a continuum bath. There are many algorithms,
procedures and protocols for particles at the interface between the simulation region
and the continuum baths (see [8] for a complete list of references on simulations).
However, none of them takes into account the actual physics at the interface. The
failure of these attempts calls for a theory of the interface that is compatible with
the physics and for the design of simulations based on such a theory.

The mathematical model of the interface is expected to reproduce the physical
conditions that actually exist on the boundary of the simulated volume. These
physical conditions are not merely the average electrostatic potential and local
concentrations at the boundary of the volume, but also their fluctuation in time.
It is important to recover the correct fluctuation, because the stochastic dynamics
of ions in solution are nonlinear, due to the coupling between the electrostatic
field and the motion of the mobile charges, so that averaged boundary conditions

∗) e-mail: amits@post.tau.ac.il
†) e-mail: schuss@post.tau.ac.il
§) e-mail: boaz.nadler@yale.edu

1



Singer et al.

do not reproduce correctly averaged nonlinear response. However, in a system of
noninteracting particles incorrect fluctuation on the boundary may still produce
the correct response outside a boundary layer in the simulation region.

The boundary fluctuation consists of arrivals of new particles from the bath
into, and of the recirculation of particles in and out of the simulation volume.
The random motion of the mobile charges brings about fluctuations in both the
concentrations and the electrostatic field. Since the simulation is confined to the
volume inside the interface, the new and the recirculated particles have to be fed
into the simulation by a source that imitates the random influx across the interface.
The interface does not represent any physical device that feeds trajectories back
into the simulation, but is rather an imaginary wall, which the physical trajectories
of the diffusing particles cross and recross any number of times. The efflux of
simulated trajectories through the interface is observed in the simulation, however,
the influx of new trajectories, which is the unidirectional flux (UF) of diffusion, has
to be calculated so as to reproduce the random influx with the correct statistical
properties of this stochastic process, as mentioned above. Thus the UF is the source
strength of the influx, and also the stochastic process that counts the number of
trajectories that cross the interface in one direction per unit time. This raises the
problem of interface theory in simulations.

This problem arises in predicting the function of protein channels of biological
membranes from their structure. They concern both the analytic description of the
channel function as well as computer simulations. These problems arise from the
molecular level description of the physics of ionic permeation through the channel.
The prediction of the properties of ionic channels from their known structure is an
interdisciplinary field, that involves biology, chemistry, physics, engineering, com-
puter science, and mathematics. Also the inverse problem, of reverse engineering
of the structure from measured channel properties, is a key problem in molecular
biophysics.

None of the existing continuum descriptions of ionic permeation captures the
rich phenomenology of the patch clamp experiment of Neher and Sakmann [1]. It
is therefore necessary to resort to particle simulations of the permeation process.
Predicting the function of an ionic channel from its structure by a computer sim-
ulation raises the question of connecting a small discrete simulation volume to a
continuum bath. Computer simulations are necessarily limited to a relatively small
number of particles, due to computational difficulties. Therefore, we analyze both
Brownian and Langevin dynamics simulations that describe the motion of mobile
ions in solution. Both models reduce the interaction of ions with the solute (water)
molecules into friction, a noise term, and a dielectric constant. We consider here
simulations of particles that interact with a mean field. We note, however, that the
mean field approximation to interacting particles is valid in the bulk at biological
concentrations. The channel and its immediate surrounding baths are expected to
be within the simulation region.

Our main results are (i) The discovery of the precise range of validity of diffusion
theory (Brownian motion) as a description of ionic motion in solution. We found the
correct way to use diffusion theory in simulations. Mathematically this is expressed
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in the determination of the range of validity of the Smoluchowski approximation
to the Langevin equation; (ii) The design of Brownian and Langevin simulations
that do not form spurious boundary layers, which are ubiquitous in molecular
simulations in biology, chemistry, and physics. This design is based on two new
mathematical insights into the theory of diffusion. One is the splitting of the
probability flux of the Brownian motion into unidirectional components, which is
the result of the definition of probability flux in terms of path integrals. The other
is the application of methods of renewal theory to the theory of diffusion.

These results have fundamental significance in the mathematical theory of dif-
fusion as a stochastic process. In 1905 Einstein [9] and, independently, in 1906
Smoluchowski [10] offered an explanation of the Brownian motion based on kinetic
theory and demonstrated, theoretically, that the phenomenon of diffusion is the
result of Brownian motion. Einstein’s theory was later verified experimentally by
Perrin [11] and Svedberg [12]. That of Smoluchowski was verified by Smoluchowski
[13], Svedberg [14], and Westgren [15]. To connect his mathematical theory with
the “irregular movement which arises from thermal molecular movement”, Einstein
made the following assumptions [9]: (1) the motion of each particle is independent
of the others and (2) “the movement of one and the same particle after different
intervals of time [are] mutually independent processes, so long as we think of these
intervals of time as being chosen not too small.” Thus Einstein’s theory is based
on the assumption that the diffusing particles are observed intermittently at time
intervals that are short, but not too short. Smoluchowski’s theory was based on
Langevin’s more refined description of the Brownian motion [16]. The study of
the mathematically idealized Brownian motion (MBM) on short time scales pushes
diffusion theory beyond its range of applicability. Thus much of the mathematical
phenomenology of the MBM, such as nowhere differentiability, local time, and so
on, occurs on time scales that do not correspond to physical diffusion.

2 Statement of the problem

The mathematical problem of the UF begins with the description of diffusion
by the diffusion equation. The diffusion equation (DE) is often considered to be an
approximation of the Fokker–Planck equation (FPE) in the Smoluchowski limit of
large damping. Both equations can be written as the conservation law

∂p

∂t
= −∇ · J . (1)

In the diffusion equation, the flux density J(x, t) depends only on position x and
time t, and is given by

J(x, t) = − 1

γ
[ε∇p(x, t) − f(x)p(x, t)] , (2)

where γ is the friction coefficient (or dynamical viscosity), ε =
kBT

m
, kB is Boltz-

mann’s constant, T is absolute temperature, and m is the mass of the diffusing
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particle. The external acceleration field is f(x) and p(x, t) is the density (or prob-
ability density) of the particles [17]. Writing the FPE in the conservation law form
(1), the flux density vector J = (Jx, Jv) is given by

Jx(x, v, t) = vp(x, v, t) ,

Jv(x, v, t) = − (γv − f(x)) p(x, v, t) − εγ∇vp(x, v, t) .
(3)

We interpret ∇ = (∇x,∇v) in (1). While the density p(x, t) in the diffusion equa-
tion (1) with (2) is the probability density of the trajectories of the Smoluchowski
stochastic differential equation

ẋ =
1

γ
f(x) +

√

2ε

γ
ẇ , (4)

where w(t) is a vector of independent standard Wiener processes (Brownian mo-
tions), the density p(x, v, t) in the FPE is the probability density of the phase space
trajectories of the Langevin equation

ẍ + γẋ = f(x) +
√

2εγ ẇ . (5)

In practically all conservation laws of the type (1) J is a net flux density vector.
It is often necessary to split it into two unidirectional components across a given
surface, such that the net flux J is their difference. Such splitting is pretty obvious
in the FPE, because the velocity v at each point x tells the two UFs apart. Thus,
in one dimension,

JLR(x, t) =

∫ ∞

0

vp(x, v, t) dv , JRL(x, t) = −
∫ 0

−∞

vp(x, v, t) dv ,

Jnet(x, t) = JLR(x, t) − JRL(x, t) =

∫ ∞

−∞

vp(x, v, t) dv .

(6)

In contrast, the net flux J(x, t) in the DE cannot be split this way, because
velocity is not a state variable. Actually, the trajectories of a diffusion process
do not have well defined velocities, because they are nowhere differentiable with
probability 1 [18]. These trajectories cross and recross every point x infinitely many
times in any time interval [t, t + ∆t], giving rise to infinite UFs. However, the net
diffusion flux is finite, as indicated in eq.(2). This phenomenon was discussed in
detail in [19], where a path integral description of diffusion was used to define the
UF. The unidirectional diffusion flux, however, is finite at absorbing boundaries,
where the UF equals the net flux. The UFs measured in diffusion across biological
membranes by using radioactive tracer [1] are in effect UFs at absorbing boundaries,
because the tracer is a separate ionic species [20].

An apparent paradox arises in the Smoluchowski approximation of the FPE
by the DE, namely, the UF of the DE is infinite for all γ, while the UF of the
FPE remains finite, even in the limit γ → ∞, in which the solution of the DE is
an approximation of that of the FPE [21]. The “paradox” is resolved by a new
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derivation of the FPE for LD from the Wiener path integral. This derivation is
different than the derivation of the DE or the Smoluchowski equation from the
Wiener integral (see, e.g. [22, 23, 24, 25]) by the method of M. Kac [26]. The
new derivation shows that the path integral definition of UF in diffusion, as first
introduced in [19], is consistent with that of UF in the FPE. However, the definition
of flux involves the limit ∆t → 0, that is, a time scale shorter than 1/γ, on which
the solution of the DE is not a valid approximation to that of the FPE.

This discrepancy between the Einstein and the Langevin descriptions of the
random motion of diffusing particles was hinted at by both Einstein and Smolu-
chowski. Einstein [9] remarked that his diffusion theory is based on the assumption
that the diffusing particles are observed intermittently at short time intervals, but
not too short, while Smoluchowski [10] showed that the variance of the displace-
ment of Langevin trajectories is quadratic in t for times much shorter than the
relaxation time 1/γ, but is linear in t for times much longer that 1/γ, which is the
same as in Einstein’s theory of diffusion [27].

The infinite unidirectional diffusion flux imposes serious limitations on BD sim-
ulations of diffusion in a finite volume embedded in a much larger bath. Such
simulations are used, for example, for the description of ion permeation in protein
channels of biological membranes [1]. If parts of the bathing solutions on both sides
of the membrane are to be included in the simulation, the UFs of particles into the
simulation have to be calculated. Simulations with BD would lead to increasing
influxes as the time step is refined.

The method of resolution of the said “paradox” is based on the definition of the
UF of the Langevin dynamics (LD) in terms of the Wiener path integral, analogous
to its definition for the BD in [19]. The UF JLR(x, t) is the probability per unit
time ∆t of trajectories that are on the left of x at time t and are on the right of x
at time t + ∆t. We show that the UF of BD coincides with that of LD if the time
unit ∆t in the definition of the unidirectional diffusion flux is exactly

∆t =
2

γ
. (7)

We find the strength of the source that ensures that a given concentration is main-
tained on the average at the interface in a BD simulation. The strength of the
left source JLR is to leading order independent of the efflux and depends on the
concentration CL, the damping coefficient γ, the temperature ε, and the time step
∆t, as given in eq.(26). To leading order it is

JLR =

√

ε

πγ∆t
CL + O

(

1

γ

)

. (8)

We also show that the coordinate of a newly injected particle has the probability
distribution of the residual of the normal distribution. Our simulation results show
that no spurious boundary layers are formed with this scheme, while they are
formed if new particles are injected at the boundary. The simulations also show
that if the injection rate is fixed, there is depletion of the population as the time
step is refined, but there is no depletion if the rate is changed according to eq.(8).
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In Section 3, we derive the FPE for the LD (5) from the Wiener path integral. In
Section 4, we define the unidirectional probability flux for LD by the path integral
and show that is indeed given by (6). In Section 5, we use the results of [21] to
calculate explicitly the UF in the Smoluchowski approximation to the solution of
the FPE and to recover the flux (2). In Section 6, we use the results of [19] to
evaluate the UF of the BD trajectories (4) in a finite time unit ∆t. In the limit
∆t → 0 the UF diverges, but if it is chosen as in (7), the UFs of LD and BD
coincide. In Section 7 we describe the a BD simulation of diffusion between fixed
concentrations and give results of simulations. In Section 8 we discuss Langevin
trajectories between fixed concentrations. Finally, Section 9 is a summary and
discussion of the results.

3 Derivation of the Fokker−Planck equation from a path integral

The LD (5) of a diffusing particle can be written as the phase space system

ẋ = v , v̇ = −γv + f(x) +
√

2εγ ẇ . (9)

This means that in time ∆t the dynamics progresses according to

x(t + ∆t) = x(t) + v(t)∆t + o(∆t) , (10)

v(t + ∆t) = v(t) + [−γv(t) + f(x(t))]∆t +
√

2εγ ∆w + o(∆t) , (11)

where ∆w ∼ N (0, ∆t), that is, ∆w is normally distributed with mean 0 and vari-
ance ∆t. This means that the probability density function evolves according to the
propagator

Prob{x(t + ∆t) = x, v(t + ∆t) = v} = p(x, v, t + ∆t) =

= o(∆t) +
1√

4εγπ∆t

∫ b

a

∫ ∞

−∞

p(ξ, η, t)δ(x − ξ − η∆t)×

× exp

{

− [v − η − [−γη + f(ξ)]∆t]
2

4εγ∆t

}

dξ dη .

(12)

To understand (12), we note that given that the displacement and velocity of the
trajectory at time t are x(t) = ξ and v(t) = η, respectively, then according to
eq.(10), the displacement of the particle at time t+∆t is deterministic, independent
of the value of ∆w, and is x = ξ+η∆t+o(∆t). Thus the probability density function
(pdf) of the displacement is δ(x−ξ−η∆t+o(∆t)). It follows that the displacement
contributes to the joint propagator (12) of x(t) and v(t) a multiplicative factor of the
Dirac δ function. Similarly, eq.(11) means that the conditional pdf of the velocity
at time t + ∆t, given x(t) = ξ and v(t) = η, is normal with mean η + [−γη +
f(ξ)]∆t + o(∆t) and variance 2εγ∆t + o(∆t), as reflected in the exponential factor
of the propagator. If trajectories are terminated at the ends of an finite or infinite
interval (a, b), the integration over the displacement variable extends only to that
interval.
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The basis for our analysis of the UF is the following new derivation of the FPE
from eq.(12). Integration with respect to ξ gives

p(x, v, t + ∆t) = o(∆t) +
1√

4εγπ∆t

∫ ∞

−∞

p(x − η∆t, η, t)×

× exp

{

− [v − η − [−γη + f(x − η∆t)]∆t]
2

4εγ∆t

}

dη .

(13)

Changing variables to

−u =
v − η − [−γη + f(x − η∆t)]∆t√

2εγ∆t
,

and expanding in powers of ∆t, the integral takes the form

p(x, v, t + ∆t) =
1√

2π(1 − γ∆t + o(∆t))

∫ ∞

−∞

e−u2/2 du × (14)

× p
(

x − v(1 + γ∆t)∆t + o(∆t),

v(1 + γ∆t) + u
√

2εγ∆t− f(x)∆t(1 + γ∆t) + o(∆t), t
)

.

Abbreviating x̃ = x−v(1+γ∆t)∆t+o(∆t), ṽ = v(1+γ∆t)+u
√

2εγ∆t−f(x)∆t(1+
γ∆t) + o(∆t) and re-expanding in powers of ∆t, we get

p (x̃, ṽ, t) = p(x, v, t) − v∆t
∂p(x, v, t)

∂x
+

+
∂p(x, v, t)

∂v

(

vγ∆t + u
√

2εγ∆t − f(x)∆t + o(∆t)
)

+

+εγu2∆t
∂2p(x, v, t)

∂v2
+ o(∆t) ,

so (14) gives

p(x, v, t + ∆t) − p(x, v, t)

1− γ∆t
= − 1

1 − γ∆t
v∆t

∂p(x, v, t)

∂x
+

+
∆t

1 − γ∆t

∂p(x, v, t)

∂v
(vγ − f(x)) +

+
εγ∆t

1 − γ∆t

∂2p(x, v, t)

∂v2
+ O

(

∆t3/2

)

.

Dividing by ∆t and taking the limit ∆t → 0, we obtain the FPE

∂p(x, v, t)

∂t
= −v

∂p(x, v, t)

∂x
+

∂

∂v
[(γv − f(x)) p(x, v, t)] + εγ

∂2p(x, v, t)

∂v2
, (15)
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which is the conservation law (1) with the flux components (3). The UF JLR(x, t)
is usually defined as the integral of Jx(x, v, t) over the positive velocities [21, and
references therein], that is,

JLR(x, t) =

∫ ∞

0

vp(x, v, t) dv . (16)

To show that this integral actually represents the probability of the trajectories that
move from left to right across x per unit time, we evaluate below the probability
flux from a path integral.

4 The unidirectional flux of the Langevin equation

The instantaneous unidirectional probability flux from left to right at a point x
is defined as the probability per unit time (∆t), of Langevin trajectories that are
to the left of x at time t (with any velocity) and propagate to the right of x at time
t + ∆t (with any velocity), in the limit ∆t → 0. This can be expressed in terms of
a path integral on Langevin trajectories on the real line as

JLR(x, t) = lim
∆t→0

1

∆t

∫ x

−∞

dξ

∫ ∞

x

dx

∫ ∞

−∞

dη

∫ ∞

−∞

dv
1√

4εγπ∆t
p(ξ, η, t) ×

×δ(x − ξ − η∆t) exp

{

−
(

v − η − [−γη + f(ξ)]∆t
)2

4εγ∆t

}

. (17)

Integrating with respect to v eliminates the exponential factor and integration with
respect to ξ fixes ξ at x − η∆t, so

JLR(x, t) = lim
∆t→0

1

∆t

∫ ∫

x−η∆t<x

p(x − η∆t, η, t) dη dx =

= lim
∆t→0

1

∆t

∫ ∞

0

dη

∫ x

x−η∆t

p(u, η, t) du

=

∫ ∞

0

ηp(x, η, t) dη . (18)

The expression (18) is identical to (16).

5 The Smoluchowski approximation to the unidirectional current

The following calculations were done in [21] and are shown here for completeness.
In the overdamped regime, as γ → ∞, the Smoluchowski approximation to p(x, v, t)
is given by

p(x, v, t) ∼ e−v2/2ε

√
2πε

{

p(x, t) − 1

γ

[

∂p(x, t)

∂x
− 1

ε
f(x)p(x, t)

]

v + O

(

1

γ2

)}

, (19)
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where the marginal density p(x, t) satisfies the Fokker–Planck–Smoluchowski equa-
tion

γ
∂p(x, t)

∂t
= ε

∂2p(x, t)

∂x2
− ∂

∂x
[f(x)p(x, t)] . (20)

According to (16) and (19), the UF is

JLR(x, t) =

∫ ∞

0

vp(x, v, t) dv =

=

∫ ∞

0

v
e−v2/2ε

√
2πε

{

p(x, t) − 1

γ

[

∂p(x, t)

∂x
− 1

ε
f(x)p(x, t)

]

v + O

(

1

γ2

)}

dv =

=

√

ε

2π
p(x, t) − 1

2γ

[

ε
∂p(x, t)

∂x
− f(x)p(x, t)

]

+ O

(

1

γ2

)

. (21)

Similarly, the UF from right to left is

JRL(x, t) = −
∫ 0

−∞

vp(x, v, t) dv =

=

√

ε

2π
p(x, t) +

1

2γ

[

ε
∂p(x, t)

∂x
− f(x)p(x, t)

]

+ O

(

1

γ2

)

.

(22)

Both UFs in (21) and (22) are finite and proportional to the marginal density at
x. The net flux is the difference

Jnet(x, t) = JLR(x, t) − JRL(x, t) = − 1

γ

[

ε
∂p(x, t)

∂x
− f(x)p(x, t)

]

, (23)

as in classical diffusion theory [21], [28].

6 The unidirectional current in the Smoluchowski equation

Classical diffusion theory, however, gives a different result. In the overdamped
regime the Langevin equation (9) is reduced to the Smoluchowski equation [17]

γẋ = f(x) +
√

2εγ ẇ . (24)

As in Section 4, the unidirectional probability current (flux) density at a point x
can be expressed in terms of a path integral as

JLR(x, t) = lim
∆t→0

JLR(x, t, ∆t) , (25)

where

JLR(x, t, ∆t) =

√

γ

4πε∆t

∫ ∞

0

dξ

∫ ∞

ξ

dζ exp

{

−γζ2

4ε

}

×

×
{

p (x, t) −
√

∆t

[

−ζf(x)

2ε
p (x, t) + (ζ − ξ)

∂p(x, t)

∂x

]

+ O

(

∆t

γ

)}

.
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It was shown in [19] that

JLR(x, t, ∆t) =

√

ε

πγ∆t
p(x, t)+

1

2γ

(

f(x)p(x, t) − ε
∂p(x, t)

∂x

)

+O

(√
∆t

γ3/2

)

. (26)

Similarly,

JRL(x1, t) = lim
∆t→0

JRL(x1, t, ∆t) ,

where

JRL(x, t, ∆t) =

√

γ

4πε∆t

∫ ∞

0

dξ

∫ ∞

ξ

dζ exp

{

−γζ2

4ε

}

×

×
{

p (x, t) +
√

∆t

[

−ζf(x)

2ε
p (x, t) + (ζ − ξ)

∂p(x, t)

∂x

]

+ O

(

∆t

γ

)}

=

=

√

ε

πγ∆t
p(x, t) − 1

2γ

(

f(x)p(x, t) − ε
∂p(x, t)

∂x

)

+ O

(√
∆t

γ3/2

)

.

(27)

If p(x1, t) > 0, then both JLR(x1, t) and JRL(x1, t) are infinite, in contradiction
to the results (21) and (22). However, the net flux density is finite and is given by

Jnet(x1, t) = lim
∆t→0

{JLR(x1, t, ∆t) − JRL(x1, t, ∆t)} =

= − 1

γ

[

ε
∂

∂x
p(x, t) − f(x)p(x, t)

]

,
(28)

which is identical to (23).
The apparent paradox is due to the idealized properties of the Brownian motion.

More specifically, the trajectories of the Brownian motion, and therefore also the
trajectories of the solution of eq.(24), are nowhere differentiable, so that any trajec-
tory of the Brownian motion crosses and recrosses the point x infinitely many times
in any time interval [t, t + ∆t] [29]. Obviously, such a vacillation creates infinite
UFs.

Not so for the trajectories of the Langevin equation (9). They have finite con-
tinuous velocities, so that the number of crossing and recrossing is finite. We note
that setting

γ∆t = 2 (29)

in equations (26) and (27) gives (21) and (22). This means that the diffusion
approximation to the FPE on time scales shorter than 1/γ gives rise to non-physical
artifacts, however, it is valid on longer time scales. The unidirectional flux in a
simulation of diffusion agrees with that of the FPE only if (29) holds, otherwise,
the unidirectional fluxes are missed, though the net flux is still correct.
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7 Brownian simulations

Here we design and analyze a BD simulation of particles diffusing between fixed
concentrations. Thus, we consider the free Brownian motion (i.e., f = 0 in eq.
(4)) in the interval [0, 1]. The trajectories were produced as follows: (i) According
to the dynamics (4), new trajectories that are started at x(−∆t) = 0 move to

x(0) =

√

2ε

γ
|∆w|; (ii) The dynamics progresses according to the Euler scheme

x(t + ∆t) = x(t) +

√

2ε

γ
∆w; (iii) The trajectory is terminated if x(t) > 1 or

x(t) < 0. The parameters are ε = 1, γ = 1000, ∆t = 1. We ran 10,000 random
trajectories and collected their statistics with the results shown in Figure 1.
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700
Concentration vs. Distance

x

C
(x

)

Fig. 1. The concentration profile of Brownian trajectories that are initiated at x = 0
with a normal distribution, and terminated at either x = 0 or x = 1.

The simulated concentration profile is linear, but for a small depletion layer
near the left boundary x = 0, where new particles are injected. This is inconsistent
with the steady state DE, which predicts a linear concentration profile in the entire
interval [0, 1]. The discrepancy stems from part (a) of the numerical scheme, which
assumes that particles enter the simulation interval exactly at x = 0. However,
x = 0 is just an imaginary interface. Had the simulation been run on the entire
line, particles would hop into the simulation across the imaginary boundary at
x = 0 from the left, rather than exactly at the boundary. This situation is familiar
from renewal theory [30]. The probability distribution of the distance an entering
particle covers, not given its previous location, is not normal, but rather it is the
residual of the normal distribution, given by

f(x) = C

∫ 0

−∞

exp

{

− (x − y)2

2σ2

}

dy ,

11



Singer et al.

where σ2 =
2ε∆t

γ
and C is determined by the normalization condition

∫ ∞

0

f(x) dx =

1. This gives

f(x) =

√

π

2σ
erfc

(

x√
2σ

)

. (30)

Rerunning the simulation with the entrance pdf f(x), we obtained the expected
linear concentration profile, without any depletion layers (see Figure 2).
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Fig. 2. The concentration profile of Brownian trajectories that are initiated at x = 0
with the residual of the normal distribution, and terminated at either x = 0 or x = 1.

Injecting particles exactly at the boundary makes their first leap into the simula-
tion too large, thus effectively decreasing the concentration profile near the bound-
ary.

Next, we changed the time step ∆t of the simulation, keeping the injection rate
of new particles constant. The population of trajectories inside the interval was
depleted when the time step was refined (see Figure 3).

A well behaved numerical simulation is expected to converge as the time step
is refined, rather than to result in different profiles. This shortcoming of refining
the time step is remedied by replacing the constant rate sources with time-step-
dependent sources, as predicted by eqs.(26)-(27). Figure 4 describes the concentra-
tion profiles for three different values of ∆t and source strengths that are propor-
tional to 1/

√
∆t. The concentration profiles now converge when ∆t → 0. The key

to this remedy is the calculation of the UF in diffusion.
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Fig. 3. The concentration profile of Brownian trajectories that are initiated at x = 0 and
terminated at either x = 0 or x = 1. Three different time steps (∆t = 4, 1, 0.25) were
used, but the injection rate of new particles remained constant. Refining the time step

decreases the concentration profile.
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Fig. 4. The concentration profile of Brownian trajectories that are initiated at x = 0
and terminated at either x = 0 or x = 1. Three different time steps (∆t = 4, 1, 0.25)
are shown, and the injection rate of new particles is proportional to 1/

√

∆t. Refining the
time step does not alter the concentration profile.
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8 Langevin trajectories between fixed concentrations

The expansion (19) gives the stationary pdfs of velocities of the particles crossing
the interface into the given volume as

pL(v) ∼

e−v2/2ε

√
2πε

{

1 +
J v

εCL

}

1

2
+

J
CL

√
2πε

for v > 0 ,

pR(v) ∼

e−v2/2ε

√
2πε

{

1 − J v

εCR

}

1

2
+

J
CR

√
2πε

for v < 0 ,

(31)

where J is the net probability flux through the channel. The source strengths
(unidirectional fluxes at the interfaces) are given by (27) as

JL =

√

ε

2π
CL − J

2
+ O

(

1

γ2

)

,

JR =

√

ε

2π
CR +

J
2

+ O

(

1

γ2

)

.

Therefore Langevin trajectories should be injected at the boundaries of the simu-
lation at rates given by the source strengths and their velocities should be chosen
according to the densities (31) [31].

As in the case of Brownian simulations, new trajectories have to be injected into
the simulation volume Ω with displacements and velocities as though the simulation
extends outside Ω, consistently with the scheme (10), (11), because the interface is
a fictitious boundary. The scheme (10), (11) can move the trajectory from the bath
B into Ω from any point ξ ∈ B and with any velocity η. The probability that a
trajectory, which is moved with time step ∆t from the bath into Ω, or from Ω into
the bath will land exactly on the boundary is zero. It follows that the pdf of the
point (x, v), where the trajectory lands in Ω in one time step, at time t′ = t + ∆t,
say, given that it started at a bath point (ξ, η) (in phase space) is, according to
(10), (11),

Pr{x(t′) = x, v(t′) = v |x(t) = ξ, v(t) = η} =

=
δ(x − ξ − η∆t)

(4πεγ∆t)3/2
exp

{

−|v − η − (γv − f(ξ))∆t|2
4εγ∆t

}

+ o(∆t) .
(32)

The stationary pdf p(ξ, η) of such a bath point is given in (19). The conditional
probability of such a landing is

Pr{x, v |x ∈ Ω, ξ ∈ B} =

∫

R
3
dη

∫

B

dξ Pr{v(t′) = v, x(t′) = x | ξ, η}p(ξ, η)

Pr{x ∈ Ω, ξ ∈ B} , (33)
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where the denominator is a normalization constant such that
∫

R
3
dv

∫

Ω

dx Pr{x, v |x ∈ Ω, ξ ∈ B} = 1 .

Thus the first point of a new trajectory is chosen according to the pdf (33) and the
subsequent points are generated according to (10), (11), that is, with the transition
pdf (32), until the trajectory leaves Ω. By construction, this scheme recovers the
joint pdf (19) in Ω, so no spurious boundary layer is formed.

As an example, we consider a one-dimensional Langevin dynamics simulation
of diffusion of free particles between fixed concentrations on a given interval. As-
suming that in a channel of length L

(CL − CR)
√

ε

γL
� CL ,

which means that γ is sufficiently large, the flux term in eq.(19) is negligible relative
to the concentration term. The concentration term is linear with slope J and thus
can be approximated by a constant, so that p(ξ) = p(0) + O

(

γ−1
)

in the left
bath. Actually, the value of p(0) 6= 0 is unimportant, because it cancels out in the
normalized pdf (33), which comes out to be

Pr{x, v |x > 0, ξ < 0} =

exp

{

− v2

2ε[1 + (γ∆t)2]

}

2ε∆t
√

1 + (γ∆t)2
×

× erfc





√

1 + (γ∆t)2

4εγ∆t

(

x

∆t
− v

1 − γ∆t

1 + (γ∆t)2

)



 .

(34)

In the limit ∆t → 0 we obtain from eq.(34)

Pr{x, v |x > 0, ξ < 0} → 2δ(x)H(v)√
2πε

e−v2/2ε , (35)

where H(v) is the Heaviside unit step function. This means that with the said
approximation, LT enter at x = 0 with a Maxwellian distribution of positive ve-
locities. Without the approximation the limiting distribution of velocities is (31).
Note, however, that injecting trajectories by any Markovian scheme, with the lim-
iting distribution (35) and with any time step ∆t, creates a boundary layer [32].

A LD simulation with CL 6= 0, CR = 0, and the parameters γ = 100, ε = 1,
L = 1, ∆t = 10−4 with 25000 trajectories, once with a Maxwellian distribution of
velocities at the boundary x = 0 (red) and once with the pdf (34) (blue) shows
that a boundary layer is formed in the former, but not in the latter (see Figure 5).

An alternative way to interpret eq.(34) is to view the simulation (10), (11) as a
discrete time Markovian process (x(t), v(t)) that never enters or exits Ω exactly at
the boundary. If, however, we run a simulation in which particles are inserted at the
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Fig. 5. Left panel: Concentration against displacement of a LD simulation with in-
jecting particles according to the residual distribution (34) (blue), and according to the
Maxwellian velocity distribution (35) exactly at the boundary (red). The two graphs are
almost identical, except for a small boundary layer near x = 0 in red. Right panel: Zoom

in of the concentration profile in the boundary layer x < 0.01 =
√

ε/γ.

boundary, the time of insertion has to be random, rather than a lattice time n∆t.
Thus the time of the first jump from the boundary into the domain is the residual
time ∆t′ between the moment of insertion and the next lattice time (n+1)∆t. The
probability density of jump size in both variables has to be randomized with ∆t′,
with the result (34).

9 Summary and discussion

Both Einstein [9] and Smoluchowski [10] pointed out that BD is a valid de-
scription of diffusion only at times that are not too short. More specifically, the
Brownian approximation to the Langevin equation breaks down at times shorter
than 1/γ, the relaxation time of the medium in which the particles diffuse.

In a BD simulation of a channel the dynamics in the channel region may be
much more complicated than the dynamics near the interface, somewhere inside the
continuum bath, sufficiently far from the channel. Thus the net flux is unknown,
while the boundary concentration is known. It follow that the simulation should
be run with source strengths (26), (27),

JLR ∼
√

ε

πγ∆t
CL +

1

2
Jnet , JRL ∼

√

ε

πγ∆t
CR − 1

2
Jnet .

However, Jnet is unknown, so neglecting it relative to

√

ε

πγ∆t
CL,R will lead to

steady state boundary concentrations that are close, but not necessarily equal to
CL and CR. Thus a shooting procedure has to be adopted to adjust the boundary
fluxes so that the output concentrations agree with CL and CR, and then the net
flux can be readily found.
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According to (26) and (27), the efflux and influx remain finite at the boundaries,
and agree with the fluxes of LD, if the time step in the BD simulation is chosen

to be ∆t =
2

γ
near the boundary. If the time step is chosen differently, the fluxes

remain finite, but the simulation does not recover the UF of LD. At points away
from the boundary, where correct UFs do not have to be recovered, the simulation
can proceed in coarser time steps.

The above analysis can be generalized to higher dimensions. In three dimensions
the normal component of the UF vector at a point x on a given smooth surface
represents the number of trajectories that cross the surface from one side to the
other, per unit area at x in unit time. Particles cross the interface in one direction
if their velocity satisfies v · n(x) > 0, where n(x) is the unit normal vector to the
surface at x, thus defining the domain of integration for eq.(6).

The time course of injection of particles into a BD simulation can be chosen with
any inter injection probability density, as long as the mean time between injections
is chosen so that the source strength is as indicated in (26) and (27). For example,
these times can be chosen independently of each other, without creating spurious
boundary layers.
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