\TN{01--3--1070--2009/2013}{1}{\tsprg}
{Theory of Elementary Particles}
{D.I.~Kazakov \\ O.V.~Teryaev}
\TC{Azerbaijan, Armenia, Belarus, Bulgaria, Canada, CERN, Czech Republic, Finland,
France, Georgia, Germany, Hungary, ICTP, Italy, Japan, Kazakhstan, Mexico, Mongolia,
New Zeland, Norway, Poland, Republic of Korea, Russia, Serbia, Spain, Slovak Republic,
Sweden, Switzerland, Ukraine, United Kingdom, USA, Uzbekistan, Vietnam.}
\TA Further development of the quantum field theory approach in the framework
of the Standard Model of fun\-damen\-tal interactions and its extensions.
Lattice simulations for obtaining nonperturbative results in gauge theories.
Elaboration of multiloop calculations in QCD, Electroweak theory, and
Minimal Supersymmetric Standard Model. Theoretical predictions concerning
the experimental observation of supersymmetry, the Higgs boson, investigation
of the spin structure of the nucleon, $T$-odd spin effects, jet handedness,
heavy flavor physics, vacuum structure in QCD, and hadron properties in dense and
hot media. Elaboration of new phenomenological models to describe the
hadron dynamics in the framework of general principles of quantum field
theory incorporating basic experimental patterns. Theoretical support of
current and future experiments at JINR, IHEP, CERN, GSI, DESY, and other
physics centers.
%\vspace*{4mm}
{\bf Expected main results in 2010:}
\begin{itemize}
%1
\item Calculation of the infrared finite observables in conformal field theories in the
leading order of perturbation theory and investigation of the cancellation of the
infrared divergencies.
Investigation of characteristics of long-lived charged superpartners of the weak
intermediate bosons within the MSSM and prospects of their observation
at the LHC collider.
%2
\item Analysis of the nucleon spin structure functions accounting for the
higher twist contributions within the analytical perturbation theory of QCD.
Investigation of the pion wave function within QCD and check of QCD factorization in
connection with the results of BABAR collaboration.
Study of the consequences of assumption about plane wave function for angular asymmetry
in pion-nucleon Drell-Yan process.
Study of the angular correlations and QCD factorization in production and decay of Higgs
bosons, jets, gravitons and black holes at LHC.
Investigation of the electromagnetic and gravitational form factors of nucleons, mesons
and nuclei.
Development of a consistent quantum field theoretical description of neutrino oscillations.
%3
\item Calculation of the hadronic contribution to the magnetic moment of muon.
Investigation of the spectroscopy of exotic hadrons, the glueballs in particular.
Description of the narrow charmonium-like resonance X(3872) as a tetra-quark.
Investigation of mixing between the light and exotic mesons taking the axial anomaly
into account.
%4
\item Investigation of the influence of the strong magnetic fields on the spin correlations,
fragmentation functions and charge asymmetry of strange hadrons
in the process of heavy ion collisions in the context of the NICA project.
Calculation of the QCD evolution and nonperturbative initial conditions for transversal
distribution functions.
Further development of the dynamical model for high-energy heavy-ion collisions based
on the Navier-Stokes dissipative equations.
\end{itemize}
\begin{stage-t}
% 1
\item \PS{Standard Model\\and its extension}{D.I.~Kazakov\\E.A.~Kuraev}{\null}
\PL{BLTP}{}{A.B.~Arbuzov\\S.M.~Bilenky\\A.V.~Gladyshev\\A.V.~Kotikov\\
G.A.~Kozlov\\V.K.~Mitrjushkin\\V.A.~Naumov\\V.N.~Pervushin\\S.I.~Vinitsky\\
M.~Yurchishin \\+ 5 pers.}
\PL{LIT}{}{V.P.~Gerdt}
\PL{VBLHEP}{}{V.G.~Krivokhizhin}
\PL{DLNP}{}{D.Yu.~Bardin\\V.A.~Bednyakov\\L.B.~Kalinovskaya}
% 2
\item \PS{QCD parton distributions \\for modern and future
colliders}{A.V.~Efremov\\O.V.~Teryaev\\D.V.~Shirkov}{\null}
\PL{BLTP}{}{A.P.~Bakulev\\S.V.~Goloskokov\\P.S.~Isaev\\
S.V.~Mikhailov\\A.V.~Nesterenko\\A.V.~Radyushkin\\O.V.~Selyugin\\
A.V.~Sidorov\\+3 pers.}
\PL{VBLHEP}{}{Yu.I.~Ivanshin\\I.A.Savin}
\PL{DLNP}{}{L.L.~Nemenov\\L.G.~Tkachev\\A.S.~Khrykin}
% 3
\item \PS{Physics of heavy and\\exotic hadrons}{A.E.~Dorokhov\\M.A.~Ivanov}{\null}
\PL{BLTP}{}{I.V.~Anikin\\I.O.~Cherednikov\\G.~Ganbold\\S.B.~Gerasimov\\G.V.~Efimov\\
S.M.~Eliseev\\N.I.~Kochelev\\V.I.~Korobov\\V.A.~Meshcheryakov\\D.~Minal\\
S.N.~Nedelko\\Yu.S.~Surovtsev\\ + 3 pers.}
\PL{VBLHEP}{}{Yu.A. Panebratsev\\ M.V. Tokarev\\ V.A. Nikitin\\ R.Ya. Zulkarneev\\ Yu.I. Ivanshin\\ I.A. Savin\\ M.G. Sapozhnikov}
\PL{DLNP}{}{S.G. Kovalenko\\ N.B. Skachkov}
% 4
\item \PS{Mixed phase in\\heavy-ion collisions}{A.N.~Sissakian\\A.S.~Sorin\\
D.~Blaschke}{\null}
\PL{BLTP}{}{A.S.~Khvorostukhin\\S.V.~Molodtsov\\A.~Parvan\\V.V.~Skokov\\V.D.~Toneev\\
M.K.~Volkov\\ + 3 pers.}
\PL{LIT}{}{Yu.L. Kalinovsky\\ Zh.Zh. Musulmanbekov}
\PL{VBLHEP}{}{V.D. Kekelidze + 2 pers.}
\PL{DLNP}{}{G.I. Lykasov + 2 pers.}
\end{stage-t}
\begin{intcoop}
\mtab{Armenia}{Yerevan}{YerPhI}
\mtab{Azerbaijan}{Baku}{BSU}
\mtab{}{}{IP ANAS}
\mtab{Belarus}{Minsk}{INP BSU}
\mtab{}{}{IP NASB}
\mtab{}{}{JIPNR-Sosny NASB}
\mtab{}{}{NC PHEP BSU}
\mtab{}{Gomel}{GSTU}
\mtab{Bulgaria}{Sofia}{INRNE BAS}
\mtab{}{}{SU}
\mtab{Canada}{Montreal}{McGill}
\mtab{}{}{UdeM}
\mtab{}{Toronto}{U of T}
\mtab{CERN}{Geneva}{}
\mtab{Czech Republic}{Prague}{CTU}
\mtab{}{}{CU}
\mtab{}{}{IP ASCR}
\mtab{}{Rez}{NPI ASCR}
\mtab{Finland}{Helsinki}{UH}
\mtab{France}{Lyon}{UCBL}
\mtab{}{Metz}{UPV-M}
\mtab{}{Montpellier}{UM2}
\mtab{}{Saclay}{SPhN CEA DAPNIA}
\mtab{}{}{IRFU}
\mtab{Georgia}{Tbilisi}{RMI GAS}
\mtab{}{}{TSU}
\mtab{Germany}{Berlin}{FU Berlin}
\mtab{}{}{HUB}
\mtab{}{Aachen}{RWTH}
\mtab{}{Bielefeld}{Univ.}
\mtab{}{Bochum}{RUB}
\mtab{}{Bonn}{UniBonn}
\mtab{}{Dortmund}{TU Dortmund}
\mtab{}{Erlangen}{Univ.}
\mtab{}{Hamburg}{DESY}
\mtab{}{Heidelberg}{Univ.}
\mtab{}{Jena}{Univ.}
\mtab{}{Julich}{FZJ}
\mtab{}{Kaiserslautern}{TU}
\mtab{}{Karlsruhe}{Univ.}
\mtab{}{Regensburg}{Univ.}
\mtab{}{Rostock}{Univ.}
\mtab{}{Mainz}{JGU}
\mtab{}{Munich}{LMU}
\mtab{}{Tubingen}{Univ.}
\mtab{}{Wuppertal}{Univ.}
\mtab{}{Zeuthen}{DESY}
\mtab{Hungary}{Budapest}{ELTE}
\mtab{}{}{KFKI RMKI}
\mtab{ICTP}{Trieste}{}
\mtab{Italy}{Bari}{INFN}
\mtab{}{Naples}{INFN}
\mtab{}{Padua}{Univ.}
\mtab{}{Pavia}{INFN}
\mtab{}{Pisa}{INFN}
\mtab{}{Trieste}{SISSA/ISAS}
\mtab{}{Turin}{Univ.}
\mtab{Japan}{Tokyo}{UT}
\mtab{}{Kyoto}{Kyoto Univ.}
\mtab{}{Nagoya}{Meiji Univ.}
\mtab{}{}{Nagoya Univ.}
\mtab{}{Tsukuba}{KEK}
\mtab{Kazakhstan}{Almaty}{INP NNC RK}
\mtab{Mexico}{Cuernavaca}{UNAM}
\mtab{Mongolia}{Ulaanbaatar}{IPT MAS}
\mtab{}{}{NUM}
\mtab{New Zealand}{Hamilton}{Univ.}
\mtab{Norway}{Trondheim}{NTNU}
\mtab{Poland}{Warsaw}{SINS}
\mtab{}{Cracow}{NINP PAS}
\mtab{}{Kielce}{PU}
\mtab{}{Lodz}{UL}
\mtab{Republic of Korea}{Seoul}{SNU}
\mtab{Russia}{Moscow}{IMM RAS}
\mtab{}{}{ITEP}
\mtab{}{}{LPI RAS}
\mtab{}{}{MSU}
\mtab{}{}{MI RAS}
\mtab{}{}{SCC RAS}
\mtab{}{}{SINP MSU}
\mtab{}{Belgorod}{BelSU}
\mtab{}{Chernogolovka}{LITP RAS}
\mtab{}{Gatchina}{PNPI RAS}
\mtab{}{Irkutsk}{ISU}
\mtab{}{Ivanovo}{ISU}
\mtab{}{Kazan}{KSU}
\mtab{}{Novosibirsk}{IM SB RAS}
\mtab{}{}{BINP SB RAS}
\mtab{}{Perm}{PSU}
\mtab{}{Protvino}{IHEP}
\mtab{}{St. Petersburg}{SPbSU}
\mtab{}{}{SPbSPU}
\mtab{}{Samara}{SSU}
\mtab{}{Saratov}{SSU}
\mtab{}{Sarov}{VNIIEF}
\mtab{}{Tomsk}{TSU}
\mtab{}{}{IHCE SB RAS}
\mtab{}{Troitsk}{INR RAS}
\mtab{}{Tver}{TvSU}
\mtab{}{Yoshkar-Ola}{MSTU}
\mtab{Serbia}{Belgrade}{Univ.}
\mtab{Slovak Republic}{Bratislava}{CU}
\mtab{}{}{IP SAS}
\mtab{}{Kosice}{IEP SAS}
\mtab{Spain}{Santiago de Compostela}{USC}
\mtab{}{Valencia}{UV}
\mtab{Switzerland}{Bern}{Uni Bern}
\mtab{}{Villigen}{PSI}
\mtab{Sweden}{Lund}{LU}
\mtab{United Kingdom}{London}{QM}
\mtab{}{}{Imperial College}
\mtab{}{Canterbury}{Univ.}
\mtab{Ukraine}{Kiev}{BITP NASU}
\mtab{}{Dnepropetrovsk}{DNU}
\mtab{}{Kharkov}{KFTI NASU}
\mtab{}{Lutsk}{VNU}
\mtab{}{Lvov}{IAPMM NASU}
\mtab{}{}{IFNU}
\mtab{}{Sumy}{SumSU}
\mtab{USA}{New York, NY}{RU}
\mtab{}{Argonne, IL}{ANL}
\mtab{}{}{CUNY}
\mtab{}{Blacksburg, VA}{Virginia Tech.}
\mtab{}{College Park, MD}{UM}
\mtab{}{Minneapolis, MN}{UofM}
\mtab{}{Norman, OK}{UO}
\mtab{}{Newport News, VA}{JLab}
\mtab{}{Philadelphia, PA}{Penn}
\mtab{}{University Park, PA}{Penn State}
\mtab{Uzbekistan}{Tashkent}{IAP NUU}
\mtab{}{}{NUU}
\mtab{}{Samarkand}{SSU}
\mtab{Vietnam}{Hanoi}{IP VAST}
\end{intcoop}
\TN{01--3--1071--2009/2013}{1}{\tsprg}
{Nuclear Structure and Dynamics}
{V.V.~Voronov\\A.I.~Vdovin}
\TC{Belarus, Belgium, Bulgaria, Brazil, Canada, Czech Republic, Egypt, France, Germany,
Greece, Hungary, Italy, Japan, Kazakhstan, Moldova, Mongolia, Norway, Poland, Portugal,
Republic of Korea, Romania, Russia, South Africa, Spain, Slovak Republic, Sweden,
Taiwan, Ukraine, United Kingdom, USA, Uzbekistan.}
\TA The main goals are to investigate properties of atomic nuclei at the limits of their
stability; to study dynamics of nuclear reactions and mechanisms of production of exotic
nuclides; to investigate fundamental properties of exotic few-body nuclear, atomic and
molecular systems;to study the behaviour of nuclear matter and its phase transitions at
high temperature and density; to evaluate new methods of relativistic nuclear physics and
apply them to analyze subnuclear and spin effects in few-nucleon systems.
%\vspace*{4mm}
{\bf Expected main results in 2010:}
\begin{itemize}
%1
\item Study of thermal effects on inelastic neutrino-nucleus scattering cross section
under stellar media conditions.
Investigation of the anomalous density matrix behaviour in the phase space as well as
its radial dependence in heavy nuclei.
Study of low energy excitation modes in odd mass nuclei within
extended versions of the Quasiparticle-Phonon nuclear model.
Investigation of nuclear spin-flip excitations in the neutral as well as
the charge-exchange channels within different approaches
based on the Skyrme-RPA scheme.
Reconsideration of the ordinary muon capture amplitudes in
view of the problem with the determination of the weak induced
pseudoscalar coupling in the gamma-neutrino correlation
experiments.
%2
\item Development of the quantum-mechanical non-Markovian treatment of initial stage
of nucleus-nucleus collisions.
Calculation of fusion cross-sections of heavy nuclei near the Coulomb barrier energy.
Study of the cluster emission by strongly excited nuclei within dinuclear system model.
Investigation of the position of the neutron and proton drip-lines and
properties of neutron- and proton-deficit isotopes of the Fe, Ni and Zn nuclei.
%3
\item Calculation of bound states in four-body meson-nucleus systems.
Calculation of double-proton decay of the $^{12}\mathrm{O}$ nucleus.
Theoretical study of $pp$ reactions in colliding proton beams in a crystal.
Quasiclassical description of spontaneous decay of excited states.
Calculation of the resonant molecule formation rate in pair collision of ultracold
atoms in optical waveguides.
%4
\item Calculation of the cross section and the transverse-longitudinal asymmetry ATL of
the three-body-break-up process $^3\rm{He}(e,e'p)pn$ in a non-factorized and
parameter-free approach.
Hydrodynamical description of first-order phase transitions with applications to those
in nuclear systems.
Investigation of the two-body exchange current contribution to the reaction of the
deuteron photodisinteg\-ra\-tion in the framework of the Bethe-Salpeter formalism.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Nuclear Structure\\far from Stability Valley}{V.V.~Voronov \\ A.I.~Vdovin\\ J.~Kvasil}{\null}
\PL{BLTP}{}{E.B.~Balbutsev\\V.A.~Kuz'min\\L.A.~Malov\\
V.O.~Nesterenko\\V.Y.~Ponomarev\\V.M.~Shilov\\A.V.~Sushkov}
\PL{LIT}{}{N.Yu. Shirikova}
\PL{FLNP}{}{A.M. Sukhovoi\\ V.I. Furman}
\PL{DLNP}{}{V.B. Brudanin\\ V.G. Kalinnikov}
\PL{FLNR}{}{Yu.P. Gangrsky}
%2
\item \PS{Nucleus-Nucleus Collisions\\and Nuclear Properties\\at the Low Energies}{R.V.~Jolos\\S.N.~Ershov}{\null}
\PL{BLTP}{}{G.G. Adamian\\N.V.~Antonenko\\M.~Cerkaski\\S.I.~Fedotov\\
F.A.~Gareev\\V.G.~Kartavenko\\R.G.~Nazmitdinov\\V.V.~Pashkevich}
\PL{FLNR}{}{Yu. E. Penionzhkevich}
%3
\item \PS{Exotic Few-Body Systems}{V.B.~Belyaev\\A.K.~Motovilov}{\null}
\PL{BLTP}{}{S.S.~Kamalov\\E.V.~Kolganova\\A.V.~Matveenko\\V.S. Melezhik\\
V.V.~Pupyshev\\J.~Revai}
\PL{DLNP}{}{O.I. Kartavtsev}
%4
\item \PS{Nuclear Structure and Dynamics\\at the Relativistic Energies}{V.V.~Burov\\M.~Gaidarov}{\null}
\PL{}{}{S.G.~Bondarenko\\L.P.~Kaptari\\V.K.~Lukyanov\\A.I.~Titov\\
V.D.~Toneev\\B.N.~Zakhariev}
\PL{LIT}{}{E.B. Zemlianaya}
\PL{VBLHEP}{}{A.I. Malakhov\\N. Piskunov\\Yu.A. Panebratsev\\ L.N. Strunov}
\end{stage-t}
\begin{intcoop}
\mtab{Belarus}{Minsk}{IP NASB}
\mtab{Belgium}{Brussels}{VUB}
\mtab{}{Ghent}{UGent}
\mtab{Brazil}{Florianopolis, SC}{UFSC}
\mtab{Bulgaria}{Sofia}{INRNE BAS}
\mtab{Canada}{Hamilton}{McMaster}
\mtab{}{Saskatoon}{U of S}
\mtab{Czech Republic}{Prague}{CU}
\mtab{}{Rez}{NPI ASCR}
\mtab{Egypt}{Cairo}{AEA}
\mtab{France}{Bordeaux}{Univ.}
\mtab{}{Caen}{GANIL}
\mtab{}{Orsay}{CSNSM}
\mtab{}{}{IPN Orsay}
\mtab{}{Saclay}{SPhN CEA DAPNIA}
\mtab{}{}{IRFU}
\mtab{Germany}{Bonn}{UniBonn}
\mtab{}{Cologne}{Univ.}
\mtab{}{Darmstadt}{GSI}
\mtab{}{}{TU Darmstadt}
\mtab{}{Dresden}{FZD}
\mtab{}{}{MPI-PkS}
\mtab{}{Erlangen}{Univ.}
\mtab{}{Frankfurt/Main}{Univ.}
\mtab{}{Giessen}{JLU}
\mtab{}{Julich}{FZJ}
\mtab{}{Leipzig}{Univ.}
\mtab{}{Mainz}{JGU}
\mtab{}{Munich}{TUM}
\mtab{}{Regensburg}{Univ.}
\mtab{}{Rostock}{Univ.}
\mtab{}{Siegen}{Univ.}
\mtab{}{Stuttgart}{Univ.}
\mtab{Greece}{Thessaloniki}{AUTH}
\mtab{}{Athens}{NCSR ``Demokritos''}
\mtab{Hungary}{Budapest}{KFKI RMKI}
\mtab{Italy}{Catania}{INFN LNS}
\mtab{}{Bologna}{Centro, ENEA}
\mtab{}{Naples}{INFN}
\mtab{}{Messina}{Univ.}
\mtab{}{Perugia}{INFN}
\mtab{}{Turin}{Univ.}
\mtab{Japan}{Tokyo}{UT}
\mtab{}{Kobe}{Kobe Univ.}
\mtab{}{Morioka}{Iwate Univ.}
\mtab{}{Osaka}{RCNP}
\mtab{}{Shizuoka}{SU}
\mtab{Kazakhstan}{Almaty}{INP NNC RK}
\mtab{}{}{KNU}
\mtab{Moldova}{Kishinev}{IAP ASM}
\mtab{Mongolia}{Ulaanbaatar}{NUM}
\mtab{Norway}{Bergen}{UiB}
\mtab{}{Oslo}{UiO}
\mtab{Poland}{Cracow}{NINP PAS}
\mtab{}{Otwock-Swierk}{SINS}
\mtab{}{Warsaw}{UW}
\mtab{}{}{WUT}
\mtab{Portugal}{Lisbon}{UL}
\mtab{Republic\\of Korea}{Seoul}{SNU}
\mtab{Romania}{Bucharest}{IFIN-HH}
\mtab{Russia}{Moscow}{ITEP}
\mtab{}{}{MEPhI}
\mtab{}{}{MSU}
\mtab{}{}{RRC KI}
\mtab{}{}{SINP MSU}
\mtab{}{Gatchina}{PNPI RAS}
\mtab{}{Irkutsk}{ISU}
\mtab{}{Obninsk}{IPPE}
\mtab{}{Omsk}{OmSU}
\mtab{}{Samara}{SSAU}
\mtab{}{Saratov}{SSU}
\mtab{}{St. Petersburg}{SPbSU}
\mtab{}{Troitsk}{INR RAS}
\mtab{}{Vladivostok}{FENU}
\mtab{Slovak Republic}{Bratislava}{CU}
\mtab{}{}{IP SAS}
\mtab{South Africa}{Pretoria}{UNISA}
\mtab{Spain}{Palma}{UIB}
\mtab{Sweden}{Lund}{LU}
\mtab{Taiwan}{Taipei}{NTU}
\mtab{Ukraine}{Kiev}{INR NASU}
\mtab{}{}{BITP NASU}
\mtab{}{Kharkov}{KFTI NASU}
\mtab{United Kingdom}{Guildford}{Univ.}
\mtab{USA}{Ames, IA}{ISU}
\mtab{}{Argonne, IL}{ANL}
\mtab{}{Columbia, MO}{MU}
\mtab{}{Lexington, KY}{UK}
\mtab{}{Los Alamos, NM}{LANL}
\mtab{}{Notre Dame, IN}{ND}
\mtab{}{University Park, PA}{Penn State}
\mtab{Uzbekistan}{Tashkent}{IAP NUU}
\mtab{}{}{INP UAS}
\mtab{}{}{PTI UAS}
\end{intcoop}
\TN{01--3--1072--2009/2013}{1}{\tsprg}
{Theory of Condensed Matter and New Materials}
{V.B.~Priezzhev\\V.A.~Osipov}
\TLD{N.M.~Plakida}
\TC{Armenia, Belarus, Belgium, Bulgaria, Brazil, Canada, Czech Republic, France,
Germany, Hungary, India, Ireland, Italy, Moldova, Mongolia, Montenegro, Poland,
Romania, Russia, Spain, Slovak Republic, Slovenia, Switzerland, Taiwan, Ukraine,
USA, Uzbekistan, Vietnam.}
\TA Multiparticle models of solids taking into consideration strong electron correlations,
electron-lattice, and spin interactions to describe spectra of quasiparticle excitations,
phase transitions and kinetic phenomena in solids. In equilibrium and nonequilibrium
media with strong correlations such as liquids and nuclear matter, the processes of
multifragmentation, clusterization in phase transitions and the influence of surface
effects on properties of clusters. In the theory of superconductivity, nonstandard
mechanisms of pairing in metal-oxides, the problem of bipolaron stability in a polaron
gas environment, the influence of strong electric fields and temperature gradients on
elastic, magnetic, and thermal properties of granular superconductors. For a study of
mechanisms of phase transitions caused by charge, orbital, and magnetic ordering in
magnetic semiconductors and in metals with a large magnetoresistance, experimental data
obtained at the Frank Laboratory of Neutron Physics, JINR, by neutron scattering and the
$\mu$SR method will be used.
Nonlinear problems in multiparticle theory will be studied by using modern methods of the
renormalization group theory, the inverse scattering problem, fractal geometry, and the
conformal field theory. The main subjects of the study are integrable systems,
equilibrium systems of the statistical mechanics, and dissipative systems far from the
thermodynamic equilibrium. The aim of these investigations is to reveal common
properties of the multiparticle systems associated with the ideas of self-similarity and
universality.
The microstructure of amorphous state will be studied in the framework of the
theoretical model where topological disorder is introduced via arrays of
disclination dipoles and loops. The thermal properties of disclinated media
are of primary interest. The electronic spectrum of carbon materials,
fullerenes and nanotubes, will be examined within the field-theory model
adapted to account for nontrivial geometry of these nanostruc\-tures. The model
of random Josephson junction arrays will be studied and applied to describe
high-temperature granular superconductors.
In the theory of finite quantum systems, local and low-dimensional states of matter
obtained in modern experiments will be investigated. In particular, properties of
quasiparticles in mesoscopic systems and the Bose-Einstein condensation in atomic traps
will be studied.
%\vspace*{4mm}
{\bf Expected main results in 2010:}
\begin{itemize}
\item Calculation of low-temperature electronic
transport properties of metallic lithium-vanadium spinel.
Elaboration of electron-phonon and
spin-fluctuation pairing mechanisms in novel iron-based layered
super\-con\-duc\-ting compounds within the strong-coupling theory.
\item Energy spectrum calculation for the emitted electrons in the graphene
nanosheets with different sheet packages and impurities.
\item Derivation of determinantal expressions for the time-like correlation
functions of the totally asymmetric exclusion process and
investigation of their asymptotics.
\item Detailed investigation of new Seiberg dualities in four dimensional
N=1 superconformal field theories. Classification of known Seiberg dual
theories and description of their effective low-energy interactions.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Physical properties of complex\\materials and nanostructures}{N.M.~Plakida\\V.A.~Osipov\\ G.~Repke}{\null}
\PL{BLTP}{}{A.Yu.~Cherny\\A.V.~Chizhov\\W.~Kleinig\\E.A.~Kochetov\\S.E.~Krasavin\\
A.L.~Kuzemsky\\V.A.~Moskalenko\\V.N.~Plechko\\J.~Schmelzer\\V.Yu.~Yushankhai}
%2
\item \PS{Mathematical problems\\ of many-particle systems}{V.B.~Priezzhev\\M.A.~Smondyrev\\V.I. Yukalov}{\null}
\PL{}{}{L.~Aleksandrov\\E.V.~Bukina\\ V.M.~Dubovik\\V.I.~Inozemtsev\\A.E.~Patrik\\
A.M.~Povolotsky\\V.P.~Spiridonov\\P.E.~Zhidkov}
\PL{FLNP}{}{V.L. Aksenov\\A.M. Balagurov}
\end{stage-t}
\begin{intcoop}
\mtab{Armenia}{Yerevan}{YerPhI}
\mtab{}{}{YSU}
\mtab{Belarus}{Minsk}{BSPU}
\mtab{}{}{IP NASB}
\mtab{}{}{JIMB NASB}
\mtab{Belgium}{Antwerp}{UA}
\mtab{Brazil}{Brasilia, DF}{UnB}
\mtab{}{San Paulo, SP}{USP}
\mtab{Bulgaria}{Sofia}{IMS BAS}
\mtab{}{}{IPC BAS}
\mtab{}{}{ISSP BAS}
\mtab{}{}{SU}
\mtab{Canada}{Montreal}{Concordia}
\mtab{}{Quebec}{Univ.}
\mtab{}{Kingston}{Queen's}
\mtab{}{London}{UWO}
\mtab{Czech Republic}{Rez}{NPI ASCR}
\mtab{France}{Marseille}{Univ.}
\mtab{}{Nice}{UN}
\mtab{Germany}{Bremen}{Univ.}
\mtab{}{Brunswick}{TU}
\mtab{}{Dortmund}{TU Dortmund}
\mtab{}{Darmstadt}{GSI}
\mtab{}{Dresden}{IFW}
\mtab{}{}{MPI-PkS}
\mtab{}{}{TU Dresden}
\mtab{}{Duisburg}{UDE}
\mtab{}{Erlangen}{Univ.}
\mtab{}{Leipzig}{Univ.}
\mtab{}{Magdeburg}{OvGU}
\mtab{}{Rostock}{Univ.}
\mtab{}{Stuttgart}{MPI-FKF}
\mtab{Hungary}{Budapest}{KFKI RMKI}
\mtab{India}{Mumbai}{TIFR}
\mtab{Ireland}{Dublin}{DIAS}
\mtab{Italy}{Catania}{Univ.}
\mtab{}{Salerno}{UniSa}
\mtab{Poland}{Cracow}{JU}
\mtab{}{Warsaw}{IPCh PAS}
\mtab{}{}{FP WUT}
\mtab{}{Katowice}{US}
\mtab{}{Poznan}{IP AMU}
\mtab{}{}{IMP PAS}
\mtab{Romania}{Bucharest}{IFIN-HH}
\mtab{}{Timisoara}{UVT}
\mtab{Russia}{Moscow}{MIREA}
\mtab{}{}{MEPhI}
\mtab{}{}{PFUR}
\mtab{}{}{SINP MSU}
\mtab{}{}{MI RAS}
\mtab{}{}{RRC KI}
\mtab{}{Belgorod}{BelSU}
\mtab{}{Dubna}{BMIREA}
\mtab{}{Gatchina}{PNPI RAS}
\mtab{}{Perm}{PSU}
\mtab{}{St. Petersburg}{ETU}
\mtab{}{}{IPTI RAS}
\mtab{}{}{SPbSU}
\mtab{}{Troitsk}{HPPI RAS}
\mtab{}{Voronezh}{VSU}
\mtab{}{Yekaterinburg}{IMP UB RAS}
\mtab{Moldova}{Kishinev}{IAP ASM}
\mtab{}{}{TUM}
\mtab{Mongolia}{Ulaanbaatar}{NUM}
\mtab{Montenegro}{Podgorica}{Univ.}
\mtab{Slovak Republic}{Bratislava}{IP SAS}
\mtab{}{Kosice}{IEP SAS}
\mtab{Slovenia}{Ljubljana}{UL}
\mtab{Spain}{Madrid}{ICMM}
\mtab{Switzerland}{Villigen}{PSI}
\mtab{Taiwan}{Taipei}{IP AS}
\mtab{Ukraine}{Kharkov}{KFTI NASU}
\mtab{}{Kiev}{IMP NASU}
\mtab{}{Lvov}{ICMP NASU}
\mtab{USA}{Chicago, IL}{Urbana Univ.}
\mtab{}{New York, NY}{CUNY}
\mtab{}{Rochester, NY}{UR}
\mtab{}{Tallahassee, FL}{FSU}
\mtab{Uzbekistan}{Tashkent}{Assoc.``P.-S.'' PTI}
\mtab{Vietnam}{Hanoi}{IMS VAST}
\end{intcoop}
\TN{01--3--1073--2009/2013}{1}{\tsprg}
{Modern Mathematical Physics: Gravity, Supersymmetry, Integrability}
{A.S.~Sorin\\A.P.~Isaev}
\TLD{A.T.~Filippov}
\TC{Australia, Austria, Armenia, Belarus, Belgium, Bulgaria, Brazil, Canada, CERN,
China, Czech Republic, France, Germany, Greece, Hungary, ICTP, India, Italy, Japan,
Mexico, Norway, Poland, Romania, Russia, Serbia, Turkey, Ukraine, United Kingdom, USA.}
\TA Superstring Theory is the most serious and worldwide pursued candidate for a
unified theory of all fundamental interactions including Quantum Gravity and
thus it is the principal source of the problems which are the subject of
modern mathematical physics. The development of the theory involves the study
of its surprisingly wide spectrum of possible regimes, vacua and exact
classical and quantum solutions. Furthermore, the theory has applications
in many directions including the nonperturbative regime of supersymmetric
gauge theories, the mechanics and thermodynamics of black holes and
cosmological models of the universe expansion. These are unique laboratories
to check general ideas from unified theories. In particular, in order to
accommodate and develop the new ideas in these sectors inspired by String
Theory, it is crucial to use the powerful mathematical methods provided by the theory
of Integrable Systems, Quantum Groups and Non-Commutative Geometry. The goals
of the present new theme precisely belong to the bridging between these
fields and further development of suitable schemes to be applied in this context.
%\vspace*{4mm}
{\bf Expected main results in 2010:}
\begin{itemize}
%1
\item Construction of new superfield extensions of the integrable multiparticle Calogero
models with $N \geq 4$ supersymmetry within the approach based on gauging isometries
of some free superfield Wess-Zumino models.
Development of a new off-shell N=3, d=3 harmonic superspace description of the combined
N=6 Chern-Simons systems related to multiple M2 branes.
%2
\item Investigation of new integrable spin chain models invariant under the action of
orthogonal and symplectic quantum groups using the representation theory of
Birman-Murakami-Wenzl algebras.
Futher development of the technique of generating series for Bethe vectors within the
framework of the universal nested Bethe ansatz for quantum integrable models with
linear symmetries. Calculation ofexplicit expressions for the norms of Bethe vectors.
Proof of Auroux conjecture related to Homological Mirror Symmetry for Fano varieties.
%3
\item Construction and investigation of exact solutions in the dilaton
gravity and search for the solution in supergravity
corresponding to the integrable cosmological billiard.
Investigation of quantum effects generated by nontrivial
geometry and topology of the space-time in the string theory
and in the theory of multi-Universe.
Rigorous formulation of the spectral problem in quantum field
theory on manifolds with nontrivial internal geometry and
nontrivial geometry of boundaries by making use of the
scattering formalism.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Quantum groups\\and integrable systems}{A.P.~Isaev}{\null}
\PL{BLTP}{}{R.M.~Mir-Kasimov\\S.Z.~Pakulyak\\G.S. Pogosyan\\P.N.~Pyatov\\A.N.~Sissakian\\
N.A.~Tyurin}
%2
\item \PS{Supersymmetry}{E.A.~Ivanov}{\null}
\PL{BLTP}{}{S.A.~Fedoruk\\S.O.~Krivonos\\A.V.~Shcherbakov\\
A.O.~Sutulin\\B.M.~Zupnik}
%3
\item \PS{Quantum gravity,\\cosmology and strings}{A.T.~Filippov\\V.V.~Nesterenko\\A.S.~Sorin}{\null}
\PL{BLTP}{}{B.M.~Barbashov\\B.~Dimitrov\\D.V.~Fursaev\\V.V.~Gribanov\\T.A.~Ivanova\\
A.B.~Pestov\\I.G.~Pirozhenko\\A.D.~Popov\\E.A.~Tagirov}
\PL{LIT}{}{I.L. Bogoliubsky\\ A.M. Chervyakov\\ E. Donets}
\PL{UC}{}{D.V. Fursaev}
\end{stage-t}
\begin{intcoop}
\mtab{Armenia}{Yerevan}{YSU}
\mtab{Austria}{Vienna}{TU Vienna}
\mtab{Australia}{Adelaide}{Univ.}
\mtab{Belarus}{Minsk}{IP NASB}
\mtab{Belgium}{Leuven}{K.U.Leuven}
\mtab{Brazil}{San Paulo, SP}{USP}
\mtab{Bulgaria}{Sofia}{INRNE BAS}
\mtab{}{}{SU}
\mtab{Canada}{Montreal}{McGill}
\mtab{}{}{UdeM}
\mtab{}{Edmonton}{U of A}
\mtab{CERN}{Geneva}{}
\mtab{China}{Hong Kong}{PolyU}
\mtab{Czech Republic}{Prague}{CTU}
\mtab{}{}{CU}
\mtab{}{}{IP ASCR}
\mtab{}{Rez}{NPI ASCR}
\mtab{France}{Annecy-le-Vieux}{LAPP}
\mtab{}{Dijon}{LPUB}
\mtab{}{Lyon}{ENS Lyon}
\mtab{}{Marseille}{CPT}
\mtab{}{Nantes}{SUBATECH}
\mtab{}{Paris}{ENS}
\mtab{}{}{LPTHE}
\mtab{}{Palaiseau}{Polytech}
\mtab{}{Valenciennes}{Univ.}
\mtab{Germany}{Berlin}{FU Berlin}
\mtab{}{}{HUB}
\mtab{}{Bielefeld}{Univ.}
\mtab{}{Bonn}{UniBonn}
\mtab{}{Dortmund}{TU Dortmund}
\mtab{}{Hannover}{Univ.}
\mtab{}{Jena}{Univ.}
\mtab{}{Leipzig}{Univ.}
\mtab{}{Munich}{MPI-P}
\mtab{}{Potsdam}{AEI}
\mtab{Greece}{Athens}{Univ.}
\mtab{Hungary}{Budapest}{KFKI RMKI}
\mtab{India}{Calcutta}{BNC}
\mtab{ICTP}{}{}
\mtab{Italy}{Bari}{INFN}
\mtab{}{Frascati}{INFN LNF}
\mtab{}{Naples}{INFN}
\mtab{}{Padua}{Univ.}
\mtab{}{Pavia}{INFN}
\mtab{}{Pisa}{INFN}
\mtab{}{Salerno}{UniSa}
\mtab{}{Trieste}{SISSA/ISAS}
\mtab{}{Turin}{INFN}
\mtab{Japan}{Fukuoka}{Kyushu Univ.}
\mtab{}{Kyoto}{KSU}
\mtab{}{}{RIMS}
\mtab{}{}{YITP}
\mtab{}{Tsukuba}{KEK}
\mtab{Mexico}{Leon}{UG}
\mtab{Norway}{Trondheim}{NTNU}
\mtab{Poland}{Warsaw}{CAC PAS}
\mtab{}{}{UW}
\mtab{}{Cracow}{IP JU}
\mtab{}{}{NINP PAS}
\mtab{}{Lodz}{UL}
\mtab{}{Wroclaw}{UW}
\mtab{Romania}{Bucharest}{IFIN-HH}
\mtab{Russia}{Moscow}{ITEP}
\mtab{}{}{LPI RAS}
\mtab{}{}{MSU}
\mtab{}{}{MI RAS}
\mtab{}{}{VNIIMS}
\mtab{}{Chernogolovka}{LITP RAS}
\mtab{}{Petrozavodsk}{PetrSU}
\mtab{}{Protvino}{IHEP}
\mtab{}{St. Petersburg}{PDMI RAS}
\mtab{}{}{SPbSU}
\mtab{}{Tomsk}{TPU}
\mtab{}{Troitsk}{INR RAS}
\mtab{Serbia}{Belgrade}{IP}
\mtab{}{}{Univ.}
\mtab{Turkey}{Istanbul}{BU}
\mtab{}{Izmir}{IYTE}
\mtab{United Kingdom}{London}{Imperial College}
\mtab{}{Cambridge}{Univ.}
\mtab{}{Durham}{Univ.}
\mtab{}{Liverpool}{Univ.}
\mtab{}{Southampton}{Univ.}
\mtab{}{York}{Univ.}
\mtab{Ukraine}{Kiev}{BITP NASU}
\mtab{}{Kharkov}{KFTI NASU}
\mtab{USA}{New York, NY}{CUNY}
\mtab{}{}{RU}
\mtab{}{}{SUNY}
\mtab{}{Baltimore, MD}{JHU}
\mtab{}{Cincinnati, OH}{UC}
\mtab{}{Clemson, SC}{CLEMSON}
\mtab{}{College Park, MD}{UM}
\mtab{}{Coral Gables, FL}{UM}
\mtab{}{Minneapolis, MN}{UofM}
\mtab{}{Philadelphia, PA}{Penn}
\mtab{}{Piscataway, NJ}{Rutgers}
\mtab{}{Rochester, NY}{UR}
\end{intcoop}
\TN{01--3--1074--2009/2013}{1}{\tsprg}
{Research and Education Project\\
"Dubna International Advanced School of Theoretical Physics\\(DIAS-TH)"}
{A.S.~Sorin\\V.V.~Voronov}
\TC{Austria, Belarus, Brazil, Bulgaria, Canada, CERN, Czech Republic, France, Germany,
Greece, Hungary, ICTP, India, Italy, Japan, Mexico, Poland, Romania, Russia, Serbia,
Turkey, Ukraine, United Kingdom, USA.}
\TA
%\vspace*{.5cm}
The Bogoliubov Laboratory of Theoretical Physics (BLTP) has a good record of organizing
international workshops and schools in Dubna. DIAS-TH organizes and supervises all
educational programs for students, postgraduates, and young scientists at BLTP.
It should function continuously and the standard short schools (about 3-4 a year)
should be organized coherently. Other educational programs in Dubna such as the
JINR University Center may also correlate with DIAS-TH (common programs on modern
theoretical physics, work\-shops for students and young scientists, etc.).\\