\TN{01--3--1070--2009/2013}{1}{\tsprg} {Theory of Elementary Particles} {D.I.~Kazakov \\ O.V.~Teryaev} \TC{Armenia, Azerbaijan, Belarus, Bulgaria, Canada, CERN, Czech Republic, Finland, France, Georgia, Germany, Hungary, ICTP, Italy, Japan, Kazakhstan, Mexico, Mongolia, New Zeland, Norway, Poland, Republic of Korea, Russia, Serbia, Spain, Slovak Republic, Sweden, Switzerland, Ukraine, United Kingdom, USA, Uzbekistan, Vietnam.} \TA Further development of the quantum field theory approach in the framework of the Standard Model of fun\-damen\-tal interactions and its extensions. Lattice simulations for obtaining nonperturbative results in gauge theories. Elaboration of multiloop calculations in QCD, Electroweak theory, and Minimal Supersymmetric Standard Model. Theoretical predictions concerning the experimental observation of supersymmetry, the Higgs boson, investigation of the spin structure of the nucleon, $T$-odd spin effects, jet handedness, heavy flavor physics, vacuum structure in QCD, and hadron properties in dense and hot media. Elaboration of new phenomenological models to describe the hadron dynamics in the framework of general principles of quantum field theory incorporating basic experimental patterns. Theoretical support of current and future experiments at JINR, IHEP, CERN, GSI, DESY, and other physics centers. {\bf Expected main results in 2011:} \begin{itemize} %1 \item Investigation of the ultraviolet and infrared properties of formfactors in N=4 supersymmetric Yang-Mills theory.

Investigation of possibilities of SUSY searches at LHC and pseudoscalar Higgs boson production at limited luminosity.

Calculation of amplitudes, its anomalous dimensions and inclusive cross-sections in QCD and super Yang-Mills theories.

Application of the Bessel-inspired form of the parton distribution functions for estimation of the neutrino-nucleon cross section at ultra-high energies. %2 \item Investigation of QCD factorization in exclusive processes and its possible violation with the inclusion of the strict constraints due to non-perturbative stability of axial anomaly.

Development of non-perturbative models for transverse momentum and spin dependent parton distri\-bu\-tions and their evolution, comparison of the models with the rigorous results of operator product expansion.

Investigation of general properties of dilepton angular distributions in hadronic and heavy ion collisions and the relation of the latter to the quark-gluon matter rotation.

Analysis of novel physical effects in the proton-antiproton annihilation in the energy range of PANDA

Investigation of analytic properties and dispersion relations for complicated hard processes involving generalized parton distributions. %3 \item Investigation of the QCD nonperturbative effects in the structure of pomeron and odderon.

Field-theoretic and phenomenological study of semi-inclusive hadronic processes within the framework of transverse-momentum dependent parton densities.

Calculation of the transversity form factor of the pion in chiral quark models.

A combined QCD analysis of polarized inclusive and semi-inclusive DIS data, determination of the higer twist contribution.

Exploration of the radiative decays of the exotic multiquark states in a relativistic quark model with infrared confinement. %4 \item Investigation of the formation and evolution of the magnetic field in relativistic heavy-ion collisions in respect of the chiral magnetic effect.

Study of the spin asymmetry and parity violating effects in hadronic matter in the energy range of NICA project. \end{itemize} \begin{stage-t} % 1 \item \PS{Standard Model\\and its extension}{D.I.~Kazakov\\E.A.~Kuraev}{\null} \PL{BLTP}{}{A.B.~Arbuzov\\A.V. Bednyakov\\ A.V.~Gladyshev\\A.V.~Kotikov\\ G.A.~Kozlov\\V.K.~Mitrjushkin\\V.A.~Naumov\\V.N.~Pervushin\\S.I.~Vinitsky + 5 pers.} \PL{LIT}{}{V.P.~Gerdt} \PL{VBLHEP}{}{V.G.~Krivokhizhin} \PL{DLNP}{}{D.Yu.~Bardin\\V.A.~Bednyakov\\L.B.~Kalinovskaya} % 2 \item \PS{QCD parton distributions \\for modern and future colliders}{A.V.~Efremov \\O.V.~Teryaev\\D.V.~Shirkov}{\null} \PL{BLTP}{}{A.P.~Bakulev\\S.V.~Goloskokov\\P.S.~Isaev\\ S.V.~Mikhailov\\A.V.~Nesterenko\\A.V.~Radyushkin\\O.V.~Selyugin\\ A.V.~Sidorov\\+3 pers.} \PL{VBLHEP}{}{Yu.I.~Ivanshin\\I.A.Savin} \PL{DLNP}{}{L.L.~Nemenov\\L.G.~Tkatchev\\A.S.~Khrykin} % 3 \item \PS{Physics of heavy and\\exotic hadrons}{A.E.~Dorokhov\\M.A.~Ivanov}{\null} \PL{BLTP}{}{I.V.~Anikin\\I.O.~Cherednikov\\G.~Ganbold\\S.B.~Gerasimov\\G.V.~Efimov\\ S.M.~Eliseev\\N.I.~Kochelev\\V.I.~Korobov\\V.A.~Meshcheryakov\\D.~Minal\\ S.N.~Nedelko\\Yu.S.~Surovtsev\\ + 3 pers.} \PL{VBLHEP}{}{Yu.A. Panebratsev\\ M.V. Tokarev\\ V.A. Nikitin\\ R.Ya. Zulkarneev\\ Yu.I. Ivanshin\\ I.A. Savin\\ M.G. Sapozhnikov} \PL{DLNP}{}{S.G. Kovalenko\\ N.B. Skachkov} % 4 \item \PS{Mixed phase in\\heavy-ion collisions}{A.S.~Sorin\\ D.~Blaschke}{\null} \PL{BLTP}{}{A.S.~Khvorostukhin\\S.V.~Molodtsov\\A.~Parvan\\V.D.~Toneev\\ M.K.~Volkov\\ + 3 pers.} \PL{LIT}{}{Yu.L. Kalinovsky\\ Zh.Zh. Musulmanbekov} \PL{VBLHEP}{}{V.D. Kekelidze + 2 pers.} \PL{DLNP}{}{G.I. Lykasov + 2 pers.} \end{stage-t} \begin{intcoop} \mtab{Armenia}{Yerevan}{YerPhI} \mtab{Azerbaijan}{Baku}{BSU} \mtab{}{}{IP ANAS} \mtab{Belarus}{Minsk}{INP BSU} \mtab{}{}{IP NASB} \mtab{}{}{JIPNR-Sosny NASB} \mtab{}{}{NC PHEP BSU} \mtab{}{Gomel}{BelSUT} \mtab{}{}{GSU} \mtab{}{}{GSTU} \mtab{Bulgaria}{Sofia}{INRNE BAS} \mtab{}{}{SU} \mtab{Canada}{Montreal}{McGill} \mtab{}{}{UdeM} \mtab{}{Toronto}{U of T} \mtab{CERN}{Geneva}{} \mtab{Czech Republic}{Prague}{CTU} \mtab{}{}{CU} \mtab{}{}{IP ASCR} \mtab{}{\v Re\v z}{NPI ASCR} \mtab{Finland}{Helsinki}{UH} \mtab{France}{Lyon}{UCBL} \mtab{}{Metz}{UPV-M} \mtab{}{Montpellier}{UM2} \mtab{}{Saclay}{SPhN CEA DAPNIA} \mtab{}{}{IRFU} \mtab{Georgia}{Tbilisi}{RMI} %\mtab{}{}{TSU} \mtab{Germany}{Berlin}{FU Berlin} \mtab{}{}{HUB} \mtab{}{Aachen}{RWTH} \mtab{}{Bielefeld}{Univ.} \mtab{}{Bochum}{RUB} \mtab{}{Bonn}{UniBonn} \mtab{}{Dortmund}{TU Dortmund} \mtab{}{Erlangen}{Univ.} \mtab{}{Hamburg}{DESY} \mtab{}{Heidelberg}{Univ.} \mtab{}{Jena}{Univ.} \mtab{}{Julich}{FZJ} \mtab{}{Kaiserslautern}{TU} \mtab{}{Karlsruhe}{Univ.} \mtab{}{Regensburg}{UR} \mtab{}{Rostock}{Univ.} \mtab{}{Mainz}{JGU} \mtab{}{Munich}{LMU} \mtab{}{Tubingen}{Univ.} \mtab{}{Wuppertal}{Univ.} \mtab{}{Zeuthen}{DESY} \mtab{Hungary}{Budapest}{ELTE} \mtab{}{}{KFKI RMKI} \mtab{ICTP}{Trieste}{} \mtab{Italy}{Bari}{INFN} \mtab{}{Naples}{INFN} \mtab{}{Padua}{Univ.} \mtab{}{Pavia}{INFN} \mtab{}{Pisa}{INFN} \mtab{}{Trieste}{SISSA/ISAS} \mtab{}{Turin}{Univ.} \mtab{Japan}{Tokyo}{UT} \mtab{}{Kyoto}{Kyoto Univ.} \mtab{}{Nagoya}{Meiji Univ.} \mtab{}{}{Nagoya Univ.} \mtab{}{Tsukuba}{KEK} \mtab{Kazakhstan}{Almaty}{INP NNC RK} \mtab{Mexico}{Cuernavaca}{UNAM} \mtab{Mongolia}{Ulaanbaatar}{IPT MAS} \mtab{}{}{NUM} \mtab{New Zealand}{Hamilton}{Univ.} \mtab{Norway}{Trondheim}{NTNU} \mtab{Poland}{Warsaw}{SINS} \mtab{}{Krakow}{NINP PAS} \mtab{}{Kielce}{UJK} \mtab{}{Lodz}{UL} \mtab{Republic of Korea}{Seoul}{SNU} \mtab{Russia}{Moscow}{IMM RAS} \mtab{}{}{ITEP} \mtab{}{}{LPI RAS} \mtab{}{}{MSU} \mtab{}{}{MI RAS} \mtab{}{}{SCC RAS} \mtab{}{}{SINP MSU} \mtab{}{Belgorod}{BelSU} \mtab{}{Chernogolovka}{LITP RAS} \mtab{}{Gatchina}{PNPI RAS} \mtab{}{Irkutsk}{ISU} \mtab{}{Ivanovo}{ISU} \mtab{}{Kazan}{KSU} \mtab{}{Novosibirsk}{IM SB RAS} \mtab{}{}{BINP SB RAS} \mtab{}{Perm}{PSU} \mtab{}{Protvino}{IHEP} \mtab{}{St. Petersburg}{SPbSU} \mtab{}{}{SPbSPU} \mtab{}{Samara}{SSU} \mtab{}{Saratov}{SSU} \mtab{}{Sarov}{VNIIEF} \mtab{}{Tomsk}{TSU} \mtab{}{}{IHCE SB RAS} \mtab{}{Troitsk}{INR RAS} \mtab{}{Tver}{TvSU} \mtab{}{Yoshkar-Ola}{MSTU} \mtab{Serbia}{Belgrade}{Univ.} \mtab{Slovak Republic}{Bratislava}{CU} \mtab{}{}{IP SAS} \mtab{}{Ko\v sice}{IEP SAS} \mtab{Spain}{Santiago de Compostela}{USC} \mtab{}{Valencia}{UV} \mtab{Switzerland}{Bern}{Uni Bern} \mtab{}{Villigen}{PSI} \mtab{Sweden}{Lund}{LU} \mtab{United Kingdom}{London}{QM} \mtab{}{}{Imperial College} \mtab{}{Canterbury}{Univ.} \mtab{Ukraine}{Kiev}{BITP NASU} \mtab{}{Dnepropetrovsk}{DNU} \mtab{}{Kharkov}{KFTI NASU} \mtab{}{Lutsk}{VNU} \mtab{}{L'viv}{IAPMM NASU} \mtab{}{}{IFNU} \mtab{}{Sumy}{SumSU} \mtab{USA}{New York, NY}{RU} \mtab{}{Argonne, IL}{ANL} \mtab{}{}{CUNY} \mtab{}{Blacksburg, VA}{Virginia Tech.} \mtab{}{College Park, MD}{UM} \mtab{}{Minneapolis, MN}{UofM} \mtab{}{Norman, OK}{UO} \mtab{}{Newport News, VA}{JLab} \mtab{}{Philadelphia, PA}{Penn} \mtab{}{University Park, PA}{Penn State} \mtab{Uzbekistan}{Tashkent}{IAP NUU} \mtab{}{}{NUU} \mtab{Vietnam}{Hanoi}{IP VAST} \end{intcoop} \TN{01--3--1071--2009/2013}{1}{\tsprg} {Nuclear Structure and Dynamics} {V.V.~Voronov\\A.I.~Vdovin} \TC{Austria, Belarus, Belgium, Bulgaria, Brazil, Canada, China, Czech Republic, Egypt, France, Germany, Greece, Hungary, Italy, Japan, Kazakhstan, Moldova, Norway, Poland, Republic of Korea, Romania, Russia, South Africa, Spain, Slovak Republic, Sweden, Taiwan, Ukraine, USA, Uzbekistan.} \TA The main goals are to investigate properties of atomic nuclei at the limits of their stability; to study dynamics of nuclear reactions and mechanisms of production of exotic nuclides; to investigate fundamental properties of exotic few-body nuclear, atomic and molecular systems;to study the behaviour of nuclear matter and its phase transitions at high temperature and density; to evaluate new methods of relativistic nuclear physics and apply them to analyze subnuclear and spin effects in few-nucleon systems. {\bf Expected main results in 2011:} \begin{itemize} %1 \item Investigation of the vortex, toroidal, and compressional E1 nuclear responses in the framework of the Skyrme-RPA approach.

Investigations of the damping of one-phonon excitations in hot fermionic systems within the Lipkin-Meshkov-Glick model.

Study of the effects of the phonon-phonon coupling on the properties of the low-lying states in the N=80 isotones with separabelized Skyrme-type interactions.

Study of the influence of tensor correlations on the Gamow-Teller strength distributions. %2 \item Development of the novel method to solve the system of coupled radial Schrodinger equations.

Study of sub-barrier nucleus-nucleus fusion within the quantum diffusion approach.

Calculations of the yields of new neutron-rich nuclides with Z=60-80 in transfer-type reactions.

Calculations of energies and structures of low-lying excitations in nuclei with Z$> 100$.

Analysis and interpretation of the data on high-spin states in rare-earth nuclides with N$~90$ obtained in the experiments in iTemba Labs (SA). %3 \item Substantiation of a universal four-body dynamics in two-component ultra-cold gases.

Study of the effect of the anisotropies in dipole-dipole interaction and optical confinement on atom-atom collisions in the trap.

Study of the influence of the 0$\nu$ double beta-decay on the properties of a white dwarf.

Derivation of sharp norm bounds on variation of spectral subspaces of multichannel Hamiltonians with $J$-self-adjoint interactions. %4 \item Study of shear and bulk viscosity of QCD matter near phase transitions.

Calculations of deuteron elastic form factors and electrodisintegration cross-sections at high momentum transfer within the Bethe-Salpeter approach with the newly developed covariant separable nucleon-nucleon interaction.

Analysis of the $^8$He+p elastic scattering cross sections at energies of tens MeV/nucleon with the micro\-sco\-pi\-cally evaluated optical potential. \end{itemize} \begin{stage-t} %1 \item \PS{Nuclear Structure\\far from Stability Valley}{V.V.~Voronov \\ A.I.~Vdovin\\ J.~Kvasil}{\null} \PL{BLTP}{}{E.B.~Balbutsev\\A.A.~Dzhioev\\V.A.~Kuz'min\\L.A.~Malov\\ V.O.~Nesterenko\\A.P.~Severyukhin\\V.M.~Shilov\\A.V.~Sushkov} \PL{LIT}{}{N.Yu. Shirikova} \PL{FLNP}{}{A.M. Sukhovoi\\ V.I. Furman} \PL{DLNP}{}{V.B. Brudanin\\ V.G. Kalinnikov} \PL{FLNR}{}{Yu.P. Gangrsky} %2 \item \PS{Nucleus-Nucleus Collisions\\and Nuclear Properties\\ at Low Energies}{R.V.~Jolos\\S.N.~Ershov}{\null} \PL{BLTP}{}{G.G. Adamian\\A.V.~Andreev\\N.V.~Antonenko\\M.~Cerkaski\\S.I.~Fedotov\\ V.G.~Kartavenko\\R.G.~Nazmitdinov\\V.V.~Pashkevich\\T.M.~Shneydman} \PL{FLNR}{}{Yu. E. Penionzhkevich} %3 \item \PS{Exotic Few-Body Systems}{V.B.~Belyaev\\A.K.~Motovilov}{\null} \PL{BLTP}{}{S.S.~Kamalov\\E.V.~Kolganova\\A.V.~Matveenko\\V.S. Melezhik\\ V.V.~Pupyshev\\J.~Revai} \PL{DLNP}{}{O.I. Kartavtsev} %4 \item \PS{Nuclear Structure and Dynamics\\at Relativistic Energies}{V.V.~Burov\\M.~Gaidarov}{\null} \PL{}{}{S.G.~Bondarenko\\L.P.~Kaptari\\V.K.~Lukyanov\\A.I.~Titov\\ V.D.~Toneev} \PL{LIT}{}{E.B. Zemlianaya} \PL{VBLHEP}{}{A.I. Malakhov\\N. Piskunov\\Yu.A. Panebratsev\\ L.N. Strunov} \end{stage-t} \begin{intcoop} \mtab{Austria}{Innsbruck}{Univ.} \mtab{Belarus}{Minsk}{IP NASB} \mtab{Belgium}{Brussels}{VUB} \mtab{Brazil}{Florianopolis, SC}{UFSC} \mtab{Bulgaria}{Sofia}{INRNE BAS} \mtab{Canada}{Hamilton}{McMaster} \mtab{}{Saskatoon}{U of S} \mtab{China}{Beijing}{ITP CAS} \mtab{}{}{PKU} \mtab{Czech Republic}{Prague}{CU} \mtab{}{\v Re\v z}{NPI ASCR} \mtab{Egypt}{Cairo}{EAEA} \mtab{France}{Bordeaux}{Univ.} \mtab{}{Caen}{GANIL} \mtab{}{Orsay}{CSNSM} \mtab{}{}{IPN Orsay} \mtab{}{Saclay}{IRFU} \mtab{Germany}{Bonn}{UniBonn} \mtab{}{Cologne}{Univ.} \mtab{}{Darmstadt}{GSI} \mtab{}{}{TU Darmstadt} \mtab{}{Dresden}{FZD} \mtab{}{}{MPI PkS} \mtab{}{Erlangen}{Univ.} \mtab{}{Frankfurt/Main}{Univ.} \mtab{}{Hamburg}{Univ.} \mtab{}{Giessen}{JLU} \mtab{}{Leipzig}{Univ.} \mtab{}{Mainz}{JGU} \mtab{}{Munich}{TUM} \mtab{}{Regensburg}{UR} \mtab{}{Rostock}{Univ.} \mtab{}{Siegen}{Univ.} \mtab{}{Stuttgart}{Univ.} \mtab{Greece}{Thessaloniki}{AUTH} \mtab{}{Athens}{NCSR "Demokritos"} \mtab{Hungary}{Budapest}{KFKI RMKI} \mtab{}{Debrecen}{Atomki} \mtab{Italy}{Bologna}{Centro, ENEA} \mtab{}{Naples}{INFN} \mtab{}{Messina}{Univ.} \mtab{}{Perugia}{INFN} \mtab{}{Trento}{Univ.} \mtab{}{Turin}{Univ.} \mtab{Japan}{Tokyo}{UT} \mtab{}{Kobe}{Kobe Univ.} \mtab{}{Morioka}{Iwate Univ.} \mtab{}{Osaka}{RCNP} \mtab{}{Shizuoka}{SU} \mtab{Kazakhstan}{Almaty}{INP NNC RK} \mtab{}{}{KNU} \mtab{Moldova}{Chi\c sin\u au}{IAP ASM} \mtab{Norway}{Bergen}{UiB} \mtab{}{Oslo}{UiO} \mtab{Poland}{Krakow}{NINP PAS} \mtab{}{Otwock-Swierk}{SINS} \mtab{}{Warsaw}{UW} \mtab{}{}{WUT} \mtab{Republic\\of Korea}{Seoul}{SNU} \mtab{Romania}{Bucharest}{IFIN-HH} \mtab{Russia}{Moscow}{ITEP} \mtab{}{}{MEPhI} \mtab{}{}{MSU} \mtab{}{}{RRC KI} \mtab{}{}{SINP MSU} \mtab{}{Gatchina}{PNPI RAS} \mtab{}{Irkutsk}{ISU} \mtab{}{Obninsk}{IPPE} \mtab{}{Omsk}{OmSU} \mtab{}{Saratov}{SSU} \mtab{}{St. Petersburg}{SPbSU} \mtab{}{Troitsk}{INR RAS} \mtab{}{Vladivostok}{FENU} \mtab{Slovak Republic}{Bratislava}{CU} \mtab{}{}{IP SAS} \mtab{South Africa}{Pretoria}{UNISA} \mtab{}{Stellenbosch}{SU} \mtab{}{Cape Town}{iThemba LABS} \mtab{Spain}{Palma}{UIB} \mtab{Sweden}{Lund}{LU} \mtab{Taiwan}{Taipei}{NTU} \mtab{Ukraine}{Kiev}{INR NASU} \mtab{}{}{BITP NASU} \mtab{USA}{Argonne, IL}{ANL} \mtab{}{Los Alamos, NM}{LANL} \mtab{}{Notre Dame, IN}{ND} \mtab{}{University Park, PA}{Penn State} \mtab{Uzbekistan}{Tashkent}{IAP NUU} \mtab{}{}{INP UAS} \mtab{}{}{Assoc."P.-S." PTI} \end{intcoop} \TN{01--3--1072--2009/2013}{1}{\tsprg} {Theory of Condensed Matter and New Materials} {V.A.~Osipov\\J.~Brankov} %%%\PLDDD{N.M.~Plakida} \TC{Armenia, Belarus, Belgium, Bulgaria, Brazil, Canada, Czech Republic, France, Germany, Hungary, India, Ireland, Italy, Moldova, Mongolia, Poland, Romania, Russia, Serbia, Spain, Slovak Republic, Slovenia, Swit\-zer\-land, Taiwan, Ukraine, USA, Uzbekistan, Vietnam.} \TA Multiparticle models of solids taking into consideration strong electron correlations, electron-lattice, and spin interactions to describe spectra of quasiparticle excitations, phase transitions and kinetic phenomena in solids. In equilibrium and nonequilibrium media with strong correlations such as liquids and nuclear matter, the processes of multifragmentation, clusterization in phase transitions and the influence of surface effects on properties of clusters. In the theory of superconductivity, nonstandard mechanisms of pairing in metal-oxides, the problem of bipolaron stability in a polaron gas environment, the influence of strong electric fields and temperature gradients on elastic, magnetic, and thermal properties of granular superconductors. For a study of mechanisms of phase transitions caused by charge, orbital, and magnetic ordering in magnetic semiconductors and in metals with a large magnetoresistance, experimental data obtained at the Frank Laboratory of Neutron Physics, JINR, by neutron scattering and the $\mu$SR method will be used.

Nonlinear problems in multiparticle theory will be studied by using modern methods of the renormalization group theory, the inverse scattering problem, fractal geometry, and the conformal field theory. The main subjects of the study are integrable systems, equilibrium systems of the statistical mechanics, and dissipative systems far from the thermodynamic equilibrium. The aim of these investigations is to reveal common properties of the multiparticle systems associated with the ideas of self-similarity and universality.

The microstructure of amorphous state will be studied in the framework of the theoretical model where topological disorder is introduced via arrays of disclination dipoles and loops. The thermal properties of disclinated media are of primary interest. The electronic spectrum of carbon materials, fullerenes and nanotubes, will be examined within the field-theory model adapted to account for nontrivial geometry of these nanostruc\-tures. The model of random Josephson junction arrays will be studied and applied to describe high-temperature granular superconductors.

In the theory of finite quantum systems, local and low-dimensional states of matter obtained in modern experiments will be investigated. In particular, properties of quasiparticles in mesoscopic systems and the Bose-Einstein condensation in atomic traps will be studied. {\bf Expected main results in 2011:} \begin{itemize} \item Quantum-chemical cluster calculation of orbital excitations in vanadium perovskites and their mani\-fes\-tation in the resonant inelastic X-ray scattering spectra.

Calculation of dynamical spin and charge susceptibilities in systems with strong electron correlations

Calculation of transport characteristics of carbon nanostructures with topological defects and layered structures

Calculation of electronic properties of quantum dots in a perpendicular magnetic field, and the estimation of the degree of the orbital entanglement of electrons depending on the strength of the magnetic field, shape of quantum dots and losses. \item Transfer matrix study of the spanning web model. Determination of the conditions under which Jordan cells appear.

Classification of known Seiberg dualities for four dimensional supersymmetric field theories. Investigation of superconformal indices of these theories which define statistical sums of BPS states and are expressed in terms of elliptic hypergeometric integrals. \end{itemize} \begin{stage-t} %1 \item \PS{Physical properties of complex\\materials and nanostructures}{N.M.~Plakida\\V.A.~Osipov\\ G.~Repke}{\null} \PL{BLTP}{}{A.Yu.~Cherny\\A.V.~Chizhov\\W.~Kleinig\\E.A.~Kochetov\\S.E.~Krasavin\\ A.L.~Kuzemsky\\V.A.~Moskalenko\\V.N.~Plechko\\J.~Schmelzer\\V.Yu.~Yushankhai} %2 \item \PS{Mathematical problems\\ of many-particle systems}{V.B.~Priezzhev \\V.I. Yukalov}{\null} \PL{}{}{L.~Aleksandrov\\E.V.~Bukina\\ V.M.~Dubovik\\V.I.~Inozemtsev\\T.A. Ivanova\\ A.E.~Patrik\\ A.M.~Povolotsky\\V.P.~Spiridonov\\P.E.~Zhidkov} \PL{FLNP}{}{V.L. Aksenov\\A.M. Balagurov} \end{stage-t} \begin{intcoop} \mtab{Armenia}{Yerevan}{YerPhI} \mtab{}{}{YSU} \mtab{Australia}{Brisbane Si Lucia}{UQ} \mtab{Belarus}{Minsk}{BSPU} \mtab{}{}{IP NASB} \mtab{}{}{JIMB NASB} \mtab{Belgium}{Louvain-la-Neuve}{UCL} \mtab{Brazil}{Brasilia, DF}{UnB} \mtab{}{Sao Paulo, SP}{USP} \mtab{Bulgaria}{Sofia}{IMech BAS} \mtab{}{}{IPC BAS} \mtab{}{}{ISSP BAS} \mtab{}{}{SU} \mtab{Canada}{Montreal}{Concordia} \mtab{}{Quebec}{Univ.} \mtab{}{Kingston}{Queen's} \mtab{}{London}{UWO} \mtab{Czech Republic}{\v Re\v z}{NPI ASCR} \mtab{France}{Marseille}{Univ.} \mtab{}{Nice}{UN} \mtab{Germany}{Bremen}{Univ.} \mtab{}{Braunschweig}{TU} \mtab{}{Dortmund}{TU Dortmund} \mtab{}{Darmstadt}{GSI} \mtab{}{Dresden}{IFW} \mtab{}{}{MPI PkS} \mtab{}{}{TU Dresden} \mtab{}{Duisburg}{UDE} \mtab{}{Erlangen}{Univ.} \mtab{}{Potsdam}{AEI} \mtab{}{Leipzig}{Univ.} \mtab{}{Magdeburg}{OvGU} \mtab{}{Rostock}{Univ.} \mtab{}{Stuttgart}{MPI-FKF} \mtab{Hungary}{Budapest}{KFKI RMKI} \mtab{India}{Mumbai}{TIFR} \mtab{Ireland}{Dublin}{DIAS} \mtab{Italy}{Catania}{UNICT} \mtab{}{Salerno}{UniSa} \mtab{Poland}{Krakow}{JU} \mtab{}{Warsaw}{IPCh PAS} \mtab{}{}{WUT} \mtab{}{Katowice}{US} \mtab{}{Poznan}{AMU} \mtab{}{}{IMP PAS} \mtab{Romania}{Bucharest}{IFIN-HH} \mtab{}{Timi\c soara}{UVT} \mtab{Russia}{Moscow}{MIREA} \mtab{}{}{MEPhI} \mtab{}{}{MSU} \mtab{}{}{PFUR} \mtab{}{}{SINP MSU} \mtab{}{}{MI RAS} \mtab{}{}{RRC KI} \mtab{}{Belgorod}{BelSU} \mtab{}{Dubna}{BMIREA} \mtab{}{Gatchina}{PNPI RAS} \mtab{}{Saratov}{SSU} \mtab{}{St. Petersburg}{ETU} \mtab{}{}{IPTI RAS} \mtab{}{}{SPbSU} \mtab{}{Troitsk}{HPPI RAS} \mtab{}{}{INR RAS} \mtab{}{Voronezh}{VSU} \mtab{}{Yekaterinburg}{IMP UB RAS} \mtab{Moldova}{Chi\c sin\u au}{IAP ASM} \mtab{}{}{TUM} \mtab{Mongolia}{Ulaanbaatar}{NUM} \mtab{Serbia}{Belgrade}{INS "VIN\v CA"} \mtab{Slovak Republic}{Bratislava}{IP SAS} \mtab{}{Ko\v sice}{IEP SAS} \mtab{Slovenia}{Ljubljana}{UL} \mtab{Spain}{Madrid}{ICMM} \mtab{Switzerland}{Villigen}{PSI} \mtab{Taiwan}{Taipei}{IP AS} \mtab{Ukraine}{Kharkov}{KFTI NASU} \mtab{}{Kiev}{IMP NASU} \mtab{}{L'viv}{ICMP NASU} \mtab{USA}{Chicago, IL}{Urbana Univ.} \mtab{}{New York, NY}{CUNY} \mtab{}{Rochester, NY}{UR} \mtab{}{Tallahassee, FL}{FSU} \mtab{Uzbekistan}{Tashkent}{Assoc."P.-S." PTI} \mtab{Vietnam}{Hanoi}{IMS VAST} \end{intcoop} \TN{01--3--1073--2009/2013}{1}{\tsprg} {Modern Mathematical Physics: Gravity, Supersymmetry, Integrability} {A.S.~Sorin\\A.P.~Isaev} %%%\PLDDD{A.T.~Filippov} \TC{Australia, Austria, Armenia, Belarus, Belgium, Bulgaria, Brazil, Canada, CERN, China, Czech Republic, France, Germany, Greece, Hungary, ICTP, India, Italy, Japan, Mexico, Norway, Poland, Romania, Russia, Serbia, Turkey, Ukraine, United Kingdom, USA.} \TA Superstring Theory is the most serious and worldwide pursued candidate for a unified theory of all fundamental interactions including Quantum Gravity and thus it is the principal source of the problems which are the subject of modern mathematical physics. The development of the theory involves the study of its surprisingly wide spectrum of possible regimes, vacua and exact classical and quantum solutions. Furthermore, the theory has applications in many directions including the nonperturbative regime of supersymmetric gauge theories, the mechanics and thermodynamics of black holes and cosmological models of the universe expansion. These are unique laboratories to check general ideas from unified theories. In particular, in order to accommodate and develop the new ideas in these sectors inspired by String Theory, it is crucial to use the powerful mathematical methods provided by the theory of Integrable Systems, Quantum Groups and Non-Commutative Geometry. The goals of the present new theme precisely belong to the bridging between these fields and further development of suitable schemes to be applied in this context. {\bf Expected main results in 2011:} \begin{itemize} %1 \item Solution of the problem of computing of the effective determinant formulas for the scalar products of the nested Bethe vectors in the quantum integrable systems with higher rank symmetries.

Reconstruction of the representation theory of Birman-Murakami-Wenzl algebras and use of this theory for investigation of integrable spin chain models having SO(N) and Sp(N) quantum symmetries. Evaluation of the exact spectrum for Hamiltonians of the SL(N) spin chains. %2 \item Construction of N=3 harmonic superfield realization of the generalized Higgs effect related M2 branes to D2 branes.

Construction and study of N=4 and N=8 supersymmetric versions of generalized quantum Landau models.

Construction of new models of N=4 supersymmetric 4D quantum mechanics with the non-Abelian self-dual Atya-Drinfeld-Hitchin-Manin background and static monopole 3D reduction of the latter. %3 \item Development of the Weyl - Eddington - Einstein affine gravity in the context of modern cosmology.

Construction and investigation of new exact solutions in theories of modified gravity (supergravity, f(R)-gravitation, Gauss-Bonnet theory) by means of geometrical and group theory methods. Application of the obtained results to the cosmological problems.

Application of the methods of spectral geometry in the theory of multi-Universe. \end{itemize} \begin{stage-t} %1 \item \PS{Quantum groups\\and integrable systems}{A.P.~Isaev}{\null} \PL{BLTP}{}{S.A. Belev\\R.M.~Mir-Kasimov\\S.Z.~Pakulyak\\G.S. Pogosyan\\ N.A.~Tyurin} %2 \item \PS{Supersymmetry}{E.A.~Ivanov}{\null} \PL{BLTP}{}{D. Cirilo\\ S.A.~Fedoruk\\S.O.~Krivonos\\M.Pientek\\ A.V.~Shcherbakov\\ A.O.~Sutulin\\B.M.~Zupnik} %3 \item \PS{Quantum gravity,\\cosmology and strings}{A.T.~Filippov\\V.V.~Nesterenko\\A.S.~Sorin}{\null} \PL{BLTP}{}{B.M.~Barbashov\\E.A. Davydov V.V.\\B.~Dimitrov\\D.V.~Fursaev\\ A.B.~Pestov\\I.G.~Pirozhenko\\A.D.~Popov\\E.A.~Tagirov\\P.V. Tretyakov} \PL{LIT}{}{I.L.~Bogoliubsky\\ A.M.~Chervyakov \\ E. Donets} \PL{UC}{}{S.Z.~Pakuliak} \end{stage-t} \begin{intcoop} \mtab{Armenia}{Yerevan}{YSU} \mtab{Austria}{Vienna}{TU Wien} \mtab{Australia}{Sydney}{Univ.} \mtab{Belarus}{Minsk}{IP NASB} \mtab{}{}{NC PHEP BSU} \mtab{Belgium}{Leuven}{K.U.Leuven} \mtab{Brazil}{Sao Paulo, SP}{USP} \mtab{Bulgaria}{Sofia}{INRNE BAS} \mtab{}{}{SU} \mtab{Canada}{Montreal}{McGill} \mtab{}{}{UdeM} \mtab{}{Edmonton}{U of A} \mtab{CERN}{Geneva}{} \mtab{Czech Republic}{Prague}{CTU} \mtab{}{}{CU} \mtab{}{}{IP ASCR} \mtab{}{\v Re\v z}{NPI ASCR} \mtab{France}{Annecy-le-Vieux}{LAPP} \mtab{France}{Annecy-le-Vieux}{LAPTh} \mtab{}{Dijon}{UB} \mtab{}{Lyon}{ENS Lyon} \mtab{}{Marseille}{CPT} \mtab{}{Nantes}{SUBATECH} \mtab{}{Paris}{ENS} \mtab{}{}{LPTHE} \mtab{}{Palaiseau}{Polytech} \mtab{}{Valenciennes}{U.V.H.C.} \mtab{Germany}{Berlin}{FU Berlin} \mtab{}{}{HUB} \mtab{}{Bielefeld}{Univ.} \mtab{}{Bonn}{UniBonn} \mtab{}{Dortmund}{TU Dortmund} \mtab{}{Hannover}{Univ.} \mtab{}{Jena}{Univ.} \mtab{}{Leipzig}{Univ.} \mtab{}{Munich}{MPI-P} \mtab{}{Potsdam}{AEI} \mtab{Greece}{Athens}{Univ.} \mtab{Hungary}{Budapest}{KFKI RMKI} \mtab{India}{Calcutta}{BNC} \mtab{ICTP}{}{} \mtab{Italy}{Bari}{INFN} \mtab{}{Frascati}{INFN LNF} \mtab{}{Naples}{INFN} \mtab{}{Padua}{Univ.} \mtab{}{Pavia}{INFN} \mtab{}{Pisa}{INFN} \mtab{}{Salerno}{UniSa} \mtab{}{Trieste}{SISSA/ISAS} \mtab{}{Turin}{INFN} \mtab{Japan}{Fukuoka}{Kyushu Univ.} \mtab{}{Kyoto}{KSU} \mtab{}{}{RIMS} \mtab{}{}{YITP} \mtab{}{Tsukuba}{KEK} \mtab{Mexico}{Leon}{UG} \mtab{Norway}{Trondheim}{NTNU} \mtab{Poland}{Warsaw}{CAC PAS} \mtab{}{}{UW} \mtab{}{Krakow}{JU} \mtab{}{}{NINP PAS} \mtab{}{Lodz}{UL} \mtab{}{Wroclaw}{UW} \mtab{Romania}{Bucharest}{IFIN-HH} \mtab{Russia}{Moscow}{ITEP} \mtab{}{}{LPI RAS} \mtab{}{}{MSU} \mtab{}{}{MI RAS} \mtab{}{}{VNIIMS} \mtab{}{Chernogolovka}{LITP RAS} \mtab{}{Petrozavodsk}{PetrSU} \mtab{}{Protvino}{IHEP} \mtab{}{St. Petersburg}{PDMI RAS} \mtab{}{}{SPbSU} \mtab{}{Tomsk}{TPU} \mtab{}{Troitsk}{INR RAS} \mtab{Serbia}{Belgrade}{IP} \mtab{}{}{Univ.} \mtab{Turkey}{Istanbul}{BU} \mtab{}{Izmir}{IYTE} \mtab{United Kingdom}{London}{Imperial College} \mtab{}{Cambridge}{Univ.} \mtab{}{Durham}{Univ.} \mtab{}{Liverpool}{Univ.} \mtab{}{Southampton}{Univ.} \mtab{}{York}{Univ.} \mtab{Ukraine}{Kiev}{BITP NASU} \mtab{}{Kharkov}{KFTI NASU} \mtab{USA}{New York, NY}{CUNY} \mtab{}{}{RU} \mtab{}{}{SUNY} \mtab{}{Baltimore, MD}{JHU} \mtab{}{Cincinnati, OH}{UC} \mtab{}{Clemson, SC}{Clemson} \mtab{}{College Park, MD}{UM} \mtab{}{Coral Gables, FL}{UM} \mtab{}{Minneapolis, MN}{UofM} \mtab{}{Norman, OK}{UO} \mtab{}{Philadelphia, PA}{Penn} \mtab{}{Piscataway, NJ}{Rutgers} \mtab{}{Rochester, NY}{UR} \end{intcoop} \TN{01--3--1074--2009/2013}{1}{\tsprg} {Research and Education Project\\ "Dubna International Advanced School of Theoretical Physics\\(DIAS-TH)"} {A.S.~Sorin\\V.V.~Voronov} \TC{Austria, Brazil, Bulgaria, Canada, CERN, Czech Republic, France, Germany, Greece, Hungary, ICTP, India, Italy, Japan, Mexico, Poland, Romania, Russia, Serbia, Turkey, Ukraine, United Kingdom, USA.} \TA The Bogoliubov Laboratory of Theoretical Physics (BLTP) has a good record of organizing international workshops and schools in Dubna. DIAS-TH organizes and supervises all educational programs for students, postgraduates, and young scientists at BLTP. It should function continuously and the standard short schools (about 3-4 a year) should be organized coherently. Other educational programs in Dubna such as the JINR University Center may also correlate with DIAS-TH (common programs on modern theoretical physics, work\-shops for students and young scientists, etc.).\\

The main goals of DIAS:
The main topics of the DIAS activity should be centered around the most important directions of research at BLTP: Particles and Fields; Nuclear Theory; Theory of Condensed Matter; Modern Mathematical Physics. {\bf Expected main results in 2011:} \begin{itemize} %1 \item Organization of four international schools and a research workshop at BLTP : IX Winter School on Theoretical Physics; XV Research Workshop on Nucleation Theory and Applications; International School "Lattice Gauge Theories"; International School "Nuclear Theory and Astrophysical Applications"; Interna\-ti\-onal Advanced School on Modern Mathematical Physics. %2 \item Organization of regular seminars for students and post-graduates at BLTP. %3 \item Computer processing of video records of lectures, support of digital archive of video records. %4 \item Support of Web-site of DIAS-TH. \end{itemize} \begin{stage-t} %1 \item \PS{}{A.S.~Sorin\\V.V.~Voronov}{\null} \PL{BLTP}{}{A.T.~Filippov\\} \PL{LIT}{}{V.V.~Korenkov} \PL{UC}{}{S.Z.~Pakuliak} \PL{FLNP}{}{V.L.~Aksenov} \PL{VBLHEP}{}{I.A.~Savin\\ Yu.A.~Panebratsev} \PL{DLNP}{}{V.A.~Bednyakov} \PL{FLNR}{}{Yu.Ts.~Oganessian} \end{stage-t} \begin{intcoop} \mtab{Austria}{Vienna}{Univ.} \mtab{}{}{TU Wien} %\mtab{Belarus}{Minsk}{NC PHEP BSU} \mtab{Brazil}{Sao Paulo, SP}{USP} \mtab{Bulgaria}{Sofia}{INRNE BAS} \mtab{}{}{SU} \mtab{Canada}{Montreal}{UdeM} \mtab{}{Edmonton}{U of A} \mtab{CERN}{Geneva}{} \mtab{Czech Republic}{Prague}{CTU} \mtab{}{}{IP ASCR} \mtab{}{\v Re\v z}{NPI ASCR} \mtab{France}{Annecy-le-Vieux}{LAPP} \mtab{}{Dijon}{UB} \mtab{}{Lyon}{ENS Lyon} \mtab{}{Marseille}{CPT} \mtab{}{Nantes}{SUBATECH} \mtab{}{Paris}{ENS} \mtab{}{}{LPTHE} \mtab{}{Valenciennes}{U.V.H.C.} \mtab{Germany}{Berlin}{HUB} \mtab{}{Bonn}{UniBonn} \mtab{}{Erlangen}{Univ.} \mtab{}{Frankfurt/Main}{Univ.} \mtab{}{Hamburg}{DESY} \mtab{}{Hannover}{Univ.} \mtab{}{Jena}{Univ.} \mtab{}{Leipzig}{Univ.} \mtab{}{Munich}{MPI-P} \mtab{}{Potsdam}{AEI} \mtab{}{Rostock}{Univ.} \mtab{}{Zeuthen}{DESY} \mtab{Greece}{Athens}{Univ.} \mtab{Hungary}{Budapest}{KFKI RMKI} \mtab{India}{Calcutta}{BNC} \mtab{ICTP}{Trieste}{} \mtab{Italy}{Frascati}{INFN LNF} \mtab{}{Padua}{Univ.} \mtab{}{Pavia}{INFN} \mtab{}{Pisa}{INFN} \mtab{}{Salerno}{UniSa} \mtab{}{Trieste}{SISSA/ISAS} \mtab{}{Turin}{INFN} \mtab{Japan}{Kyoto}{KSU} \mtab{}{}{RIMS} \mtab{}{Tsukuba}{KEK} \mtab{Mexico}{Leon}{UG} \mtab{Poland}{Warsaw}{UW} \mtab{}{Otwock-Swierk}{SINS} \mtab{}{Wroclaw}{UW} \mtab{Romania}{Bucharest}{IFIN-HH} \mtab{Russia}{Moscow}{ITEP} \mtab{}{}{LPI RAS} \mtab{}{}{MSU} \mtab{}{}{SCC RAS} \mtab{}{}{SINP MSU} \mtab{}{}{MI RAS} \mtab{}{}{VNIIMS} \mtab{}{Chernogolovka}{LITP RAS} \mtab{}{Gatchina}{PNPI RAS} \mtab{}{Petrozavodsk}{PetrSU} \mtab{}{Protvino}{IHEP} \mtab{}{St. Petersburg}{PDMI RAS} \mtab{}{Tomsk}{TSU} \mtab{}{Troitsk}{INR RAS} \mtab{Serbia}{Belgrade}{IP} \mtab{}{}{Univ.} \mtab{Turkey}{Istanbul}{BU} \mtab{Ukraine}{Kiev}{BITP NASU} \mtab{}{Kharkov}{KFTI NASU} \mtab{United Kingdom}{London}{Imperial College} \mtab{}{Durham}{Univ.} \mtab{}{Cambridge}{Univ.} \mtab{}{Southampton}{Univ.} \mtab{}{York}{Univ.} \mtab{USA}{New York, NY}{CUNY} \mtab{}{}{SUNY} \mtab{}{Baltimore, MD}{JHU} \mtab{}{College Park, MD}{UM} \mtab{}{Cincinnati, OH}{UC} \mtab{}{Coral Gables, FL}{UM} \mtab{}{Minneapolis, MN}{UofM} \mtab{}{Newport News, VA}{JLab} \mtab{}{Philadelphia, PA}{Penn} \mtab{}{Piscataway, NJ}{Rutgers} \mtab{}{Rochester, NY}{UR} \mtab{}{Salt Lake City, UT}{U of U} \mtab{Vietnam}{Hanoi}{IP VAST} \end{intcoop}