\TN{01-3-1070-2009/2013}{1}{\tscom}
{Theory of Elementary Particles}
{D.I. Kazakov \\ O.V. Teryaev}
\TC{Armenia, Azerbaijan, Belarus, Bulgaria, Canada, CERN, Czech Republic, Finland,
France, Georgia, Germany, Hungary, ICTP, Italy, Japan, Kazakhstan, Mexico, Mongolia,
New Zeland, Norway, Poland, Republic of Korea, Russia, Serbia, Slovak Republic,
Spain, Sweden, Switzerland, Ukraine, United Kingdom, USA, Uzbekistan, Vietnam.}
\TA Further development of the quantum field theory approach in the framework
of the Standard Model of fun\-damen\-tal interactions and its extensions.
Lattice simulations for obtaining nonperturbative results in gauge theories.
Elaboration of multiloop calculations in QCD, Electroweak theory, and
Minimal Supersymmetric Standard Model. Theoretical predictions concerning
the experimental observation of supersymmetry, the Higgs boson, investigation
of the spin structure of the nucleon, $T$-odd spin effects, jet handedness,
heavy flavor physics, vacuum structure in QCD, and hadron properties in dense and
hot media. Elaboration of new phenomenological models to describe the
hadron dynamics in the framework of general principles of quantum field
theory incorporating basic experimental patterns. Theoretical support of
current and future experiments at JINR, IHEP, CERN, GSI, DESY, and other
physics centers.
%%\vspace*{4mm}
{\bf Expected main results in 2013:}
\begin{itemize}
%1
\item Calculation of the amplitudes in the spontaneously broken ${\cal N}=4$ supersymmetric Yang-Mills
theory in the weak coupling regime.
Calculation of the NLO correction to the BFKL equation in the Leigh-Strassler deformation
of the ${\cal N}=4$ SYM theory.
Calculation of radiative corrections to the lepton production in proton-antiproton annihilation.
Analysis of the parameter space of the Minimal supersymmetric Standard Model with account
of accelerator and astrophysical data and investigation of possibilities of SUSY searches at the LHC.
Analysis of recent data on the light and heavy Higgs searches at the LHC in the framework of the MSSM.
Extraction of the axial and pseudoscalar form factors of the nucleon from a statistical analysis
of accelerator data on neutrino and antineutrino interactions with nuclei.
%2
\item Finding the solutions of Evolution Equations for Transverse Momentum Dependent Parton
Distribution Functions and exploration of relations between them for Semi-Inclusive Deep Inelastic
Scattering and Drell-Yan processes in connection with the COMPASS experiment.
The investigation of $Q^2$ evolution of the structure function $F_2$ at small $x$ with the BFKL
corrections taken into account.
Investigation of higher twist contributions in the processes at low momentum transfer and their
interplay with the modifications of perturbation theory, development of the methods of summation
of their infinite series, search for the terms beyond the local Operator Product Expansion.
Applications of QCD collinear factorization to the exclusive processes including the meson
electroproduction, Higgs central exclusive production and deeply virtual deuteron breakup.
Application of exact anomaly sum rules to the time-like formfactors and QCD matter.
%3
\item Calculation of the hadronic light-by-light scattering contribution to the muon g-2 due
to a dynamic quark loop. These calculations complete all terms leading in $1/N_c$ approximation.
Calculation of the differential rates and the forward-backward assymmetries for the rare
decays of baryons containing heavy b-quark using the covariant quark model.
Calculation of the quark anomalous magnetic moment contribution to the pion single spin
asymmetries in proton-proton collisions.
%4
\item Calculation of vorticity in relativistic heavy-ion collisions in transport and
hydrodynamic models.
Investigation of particle distributions and collective effects in hadronic and heavy-ion
collisions using the effectrive Levy-Tsallis statistics. Exploration of QCD analogs of multiple
high energy hadron scattering in the dense nuclear medium.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Standard Model\\and its extension}{D.I. Kazakov\\E.A. Kuraev}{\null}
\PL{BLTP}{}{A.B. Arbuzov, A.V. Bednyakov, A.V. Gladyshev, A.V. Kotikov,
G.A. Kozlov, V.K. Mitrjushkin, V.A. Naumov, V.N. Pervushin, A.D. Popov,
S.I. Vinitsky + 5 students}
\PL{LIT}{}{V.P. Gerdt}
\PL{VBLHEP}{}{V.G. Krivokhizhin}
\PL{DLNP}{}{D.Yu. Bardin, V.A. Bednyakov, L.B. Kalinovskaya}
%2
\item \PS{QCD parton distributions \\for modern and future colliders}{A.V. Efremov\\O.V. Teryaev\\D.V. Shirkov}{\null}
\PL{BLTP}{}{S.V. Goloskokov, P.S. Isaev,
S.V. Mikhailov, A.V. Nesterenko, A.V. Radyushkin, O.V. Selyugin,
A.V. Sidorov + 3 students}
\PL{VBLHEP}{}{Yu.I. Ivanshin, I.A. Savin}
\PL{DLNP}{}{L.L. Nemenov, L.G. Tkatchev, A.S. Khrykin}
%3
\item \PS{Physics of heavy and\\exotic hadrons}{A.E. Dorokhov\\M.A. Ivanov}{\null}
\PL{BLTP}{}{I.V. Anikin, I.O. Cherednikov, G. Ganbold, S.B. Gerasimov, G.V. Efimov,
S.M. Eliseev, N.I. Kochelev, V.I. Korobov, V.A. Meshcheryakov, D. Minal,
S.N. Nedelko, Yu.S. Surovtsev, S.A. Zhaugasheva + 3 students}
\PL{VBLHEP}{}{Yu.A. Panebratsev, M.V. Tokarev, V.A. Nikitin,
Yu.I. Ivanshin, I.A. Savin, M.G. Sapozhnikov}
\PL{DLNP}{}{V.A. Bednyakov, N.B. Skachkov}
%4
\item \PS{Mixed phase in\\heavy-ion collisions}{A.S. Sorin\\ D. Blaschke}{\null}
\PL{BLTP}{}{A.S. Khvorostukhin, S.V. Molodtsov, A. Parvan, V.D. Toneev,
M.K. Volkov + 3 students}
\PL{LIT}{}{Yu.L. Kalinovsky, Zh.Zh. Musulmanbekov}
\PL{VBLHEP}{}{V.D. Kekelidze}
\PL{DLNP}{}{G.I. Lykasov }
\end{stage-t}
\begin{intcoop}
\mtab{Armenia}{Yerevan}{RAU}
\mtab{}{}{ANL}
\mtab{Azerbaijan}{Baku}{IP ANAS}
\mtab{Belarus}{Minsk}{INP BSU}
%\mtab{}{}{IP NASB}
\mtab{}{}{JIPNR-Sosny NASB}
\mtab{}{}{NC PHEP BSU}
\mtab{}{Gomel}{BelSUT}
\mtab{}{}{GSU}
\mtab{}{}{GSTU}
\mtab{Bulgaria}{Sofia}{INRNE BAS}
\mtab{}{}{SU}
\mtab{Canada}{Montreal}{McGill}
\mtab{}{}{UdeM}
\mtab{}{Toronto}{U of T}
\mtab{CERN}{Geneva}{CERN}
\mtab{Czech Republic}{Prague}{CTU}
\mtab{}{}{CU}
\mtab{}{}{IP ASCR}
\mtab{}{Rez}{NPI ASCR}
\mtab{Finland}{Helsinki}{UH}
\mtab{France}{Lyon}{UCBL}
\mtab{}{Metz}{UPV-M}
\mtab{}{Montpellier}{UM2}
\mtab{}{Saclay}{SPhN CEA DAPNIA}
\mtab{}{}{IRFU}
\mtab{Georgia}{Tbilisi}{RMI TSU}
%\mtab{}{}{TSU}
\mtab{Germany}{Berlin}{FU Berlin}
\mtab{}{}{HUB}
\mtab{}{Aachen}{RWTH}
\mtab{}{Bielefeld}{Univ.}
\mtab{}{Bochum}{RUB}
\mtab{}{Bonn}{UniBonn}
\mtab{}{Dortmund}{TU Dortmund}
\mtab{}{Erlangen}{FAU}
\mtab{}{Hamburg}{DESY}
\mtab{}{Heidelberg}{Univ.}
\mtab{}{Jena}{Univ.}
\mtab{}{Julich}{FZJ}
\mtab{}{Kaiserslautern}{TU}
\mtab{}{Karlsruhe}{KIT}
\mtab{}{Regensburg}{UR}
\mtab{}{Rostock}{Univ.}
\mtab{}{Mainz}{JGU}
\mtab{}{Munich}{LMU}
\mtab{}{Tubingen}{Univ.}
\mtab{}{Wuppertal}{Univ.}
\mtab{}{Zeuthen}{DESY}
\mtab{Hungary}{Budapest}{ELTE}
\mtab{}{}{Wigner RCP}
\mtab{ICTP}{Trieste}{ICTP}
\mtab{Italy}{Bari}{INFN}
\mtab{}{Naples}{INFN}
\mtab{}{Padua}{UniPd}
\mtab{}{Pavia}{INFN}
\mtab{}{Pisa}{INFN}
\mtab{}{Trieste}{SISSA/ISAS}
\mtab{}{Turin}{UniTo}
\mtab{Japan}{Tokyo}{UT}
\mtab{}{Kyoto}{Kyoto Univ.}
\mtab{}{Nagoya}{Meiji Univ.}
\mtab{}{}{Nagoya Univ.}
\mtab{}{Tsukuba}{KEK}
\mtab{Kazakhstan}{Almaty}{FAPI}
\mtab{}{Astana}{BA INP NNC RK}
\mtab{Mexico}{Cuernavaca}{UNAM}
\mtab{Mongolia}{Ulaanbaatar}{IPT MAS}
\mtab{}{}{NUM}
\mtab{New Zealand}{Hamilton}{Univ.}
\mtab{Norway}{Trondheim}{NTNU}
\mtab{Poland}{Krakow}{NINP PAS}
\mtab{}{Kielce}{UJK}
\mtab{}{Lodz}{UL}
\mtab{}{Otwock-Swierk}{NCBJ}
\mtab{Republic of Korea}{Seoul}{SNU}
\mtab{Russia}{Moscow}{IMM RAS}
\mtab{}{}{ITEP}
\mtab{}{}{LPI RAS}
\mtab{}{}{MSU}
\mtab{}{}{MI RAS}
\mtab{}{}{SCC RAS}
\mtab{}{}{SINP MSU}
\mtab{}{Moscow, Troitsk}{INR RAS}
\mtab{}{Belgorod}{NRU BelSU}
\mtab{}{Chernogolovka}{LITP RAS}
\mtab{}{Gatchina}{PNPI}
\mtab{}{Irkutsk}{ISU}
\mtab{}{Ivanovo}{ISU}
\mtab{}{Kazan}{KFU}
\mtab{}{Novosibirsk}{IM SB RAS}
\mtab{}{}{BINP SB RAS}
\mtab{}{Perm}{PSNRU}
\mtab{}{Protvino}{IHEP}
\mtab{}{St. Petersburg}{SPbSU}
\mtab{}{}{SPbSPU}
\mtab{}{Samara}{SSU}
\mtab{}{Saratov}{SSU}
\mtab{}{Sarov}{VNIIEF}
\mtab{}{Tomsk}{TSU}
\mtab{}{}{IHCE SB RAS}
\mtab{}{Tver}{TvSU}
\mtab{}{Yoshkar-Ola}{VSUT}
\mtab{Serbia}{Belgrade}{Univ.}
\mtab{Slovak Republic}{Bratislava}{CU}
\mtab{}{}{IP SAS}
\mtab{}{Kosice}{IEP SAS}
\mtab{Spain}{Santiago de Compostela}{USC}
\mtab{}{Valencia}{UV}
\mtab{Switzerland}{Bern}{Uni Bern}
\mtab{}{Villigen}{PSI}
\mtab{Sweden}{Lund}{LU}
\mtab{United Kingdom}{London}{QM}
\mtab{}{}{Imperial College}
\mtab{}{Canterbury}{Univ.}
\mtab{Ukraine}{Kiev}{BITP NASU}
\mtab{}{Dnepropetrovsk}{DNU}
\mtab{}{Kharkov}{KFTI NASU}
\mtab{}{Lutsk}{VNU}
\mtab{}{L'viv}{IAPMM NASU}
\mtab{}{}{IFNU}
\mtab{}{Sumy}{SumSU}
\mtab{USA}{New York, NY}{RU}
\mtab{}{}{CUNY}
\mtab{}{Argonne, IL}{ANL}
%\mtab{}{Blacksburg, VA}{Virginia Tech.}
\mtab{}{College Park, MD}{UM}
\mtab{}{Minneapolis, MN}{UofM}
\mtab{}{Norman, OK}{UO}
\mtab{}{Newport News, VA}{JLab}
\mtab{}{Philadelphia, PA}{Penn}
\mtab{}{University Park, PA}{Penn State}
\mtab{Uzbekistan}{Tashkent}{IAP NUU}
\mtab{}{}{NUU}
\mtab{Vietnam}{Hanoi}{IP VAST}
\end{intcoop}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\TN{01-3-1071-2009/2013}{1}{\tscom}
{Nuclear Structure and Dynamics}
{V.V. Voronov\\A.I. Vdovin\\F. Simkovic}
\TC{Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Egypt,
France, Germany, Greece, Hungary, Italy, Japan, Kazakhstan, Moldova, Norway, Poland,
Republic of Korea, Romania, Russia, Slovak Republic, South Africa, Spain, Sweden, Switzerland,
Taiwan, Ukraine, USA, Uzbekistan.}
\TA The main goals are to investigate properties of atomic nuclei at the limits of their
stability; to study dynamics of nuclear reactions and mechanisms of production of exotic
nuclides; to investigate fundamental properties of exotic few-body nuclear, atomic and
molecular systems;to study the behaviour of nuclear matter and its phase transitions at
high temperature and density; to evaluate new methods of relativistic nuclear physics and
apply them to analyze subnuclear and spin effects in few-nucleon systems.
%%\vspace*{4mm}
{\bf Expected main results in 2013:}
\begin{itemize}
\item Study of the effects of phonon-phonon coupling on properties of dipole pygmy
resonance
in $^{124-132}$Sn.
Estimation of the neutrino mass from the shape of the electron energy
spectrum near the
endpoint in unique forbidden beta decay.
Study of octupole and dipole collectivity through the interacting boson
models.
Study of $\beta$-decays in neutron-rich nuclei with Skyrme interactions.
Calculations of transition densities and charge radii in odd spherical
nuclei
taking into account ground state correlations beyond the RPA ones.
%2
\item Explanation of the anharmonic effects in the spectra of the alternating
parity bands of the U and Pu isotopes.
To perform the microscopic calculation of level densities in
superheavy nuclei
and clarify influence on the survival of excited heaviest nuclei.
Description of the experimental data on cluster decay probabilities from
isomeric states in heavy nuclei and cross sections of synthesis of new
superheavy
nuclei in different reactions.
Investigation of the structure of the heaviest known Borromean nucleus
$^{22}$C.
%3
\item Estimates for the rate of the $p p e \to d+\nu$ reaction at the Sun conditions and
the corresponding neutrino flux.
Calculations of angular distributions for outgoing particles in collisions of neutral atoms
with nagative ions on the basis of the discrete representation for ionization processes.
Study of universal properties of two-component four-body systems.
Elaboration of a theoretical model for description of the Feshbach resonances with
different tensor structures in optical traps.
Sharpening the generic norm bounds on variation of the spectral subspace of a multichannel
Hamiltionian associated with an isolated spectral component.
%4
\item The code based on SHASTA (SHarp and Smooth Transport Algorithm) for the
Israel-Stuart hydrodynamics will be realized for the general case of finite baryon density.
Description within the Tsallis non-extensive statistics of the transverse-momentum
distributions of charged hadrons in $pp$ collisions at the LHC.
Investigation of quantum effects in short impulse intensive electromagnetic (laser)
fields and their application to particle production.
Simulation of the vorticity effect in heavy ion collisions and search for its
signals at the collision energies reachable at the NICA.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Nuclear Structure\\far from Stability Valley}{V.V. Voronov \\ A.I. Vdovin\\ J. Kvasil}{\null}
\PL{BLTP}{}{N.N. Arseniev, E.B. Balbutsev, A.A. Dzhioev, V.A. Kuz'min,
L.A. Malov, S. Mishev, V.O. Nesterenko, A.P. Severyukhin, Ganev H., Shimkovic F.,
Dvornicki R. V.M. Shilov, A.V. Sushkov + 2 students}
\PL{LIT}{}{N.Yu. Shirikova, I.V. Molodtsova}
\PL{FLNP}{}{A.M. Sukhovoi, V.I. Furman}
\PL{DLNP}{}{V.B. Brudanin, V.G. Kalinnikov}
\PL{FLNR}{}{Yu.P. Gangrsky}
%2
\item \PS{Nucleus-Nucleus Collisions\\and Nuclear Properties\\at Low Energies}{R.V. Jolos\\S.N. Ershov}{\null}
\PL{BLTP}{}{G.G. Adamian, A.V. Andreev, N.V. Antonenko,
I.A. Egorova, S.I. Fedotov, V.G. Kartavenko, Sh. Kalandarov,
A.K. Nasirov, R.G. Nazmitdinov, V.V. Pashkevich, T.M. Shneydman,
A.S. Zubov+ 3 students}
\PL{FLNR}{}{L.V. Grigorenko, Yu.E. Penionzhkevich}
%3
\item \PS{Exotic Few-Body Systems}{V.B. Belyaev\\A.K. Motovilov}{\null}
\PL{BLTP}{}{S.S. Kamalov, E.V. Kolganova, A.V. Malykh, V.S. Melezhik,
V.V. Pupyshev, J. Revai, E.A. Soloviev, I.I. Shlyk + 3 students}
\PL{DLNP}{}{O.I. Kartavtsev}
%4
\item \PS{Nuclear Structure and Dynamics\\at Relativistic Energies}{V.V. Burov\\M. Gaidarov}{\null}
\PL{BLTP}{}{S.G. Bondarenko, A.V. Frisen, L.P. Kaptari,
A. Khvorostukhin, V.K. Lukyanov, A.S. Parvan, A.I. Titov,
V.D. Toneev + 1 student}
\PL{LIT}{}{E.B. Zemlianaya}
\PL{VBLHEP}{}{A.I. Malakhov, N.M. Piskunov, Yu.A. Panebratsev,
E.P. Rogochaya}
\end{stage-t}
\begin{intcoop}
\mtab{Austria}{Innsbruck}{Univ.}
\mtab{Belarus}{Minsk}{IP NASB}
\mtab{Belgium}{Brussels}{VUB}
\mtab{Brazil}{Florianopolis, SC}{UFSC}
\mtab{Bulgaria}{Sofia}{INRNE BAS}
\mtab{}{Shumen}{US}
\mtab{Canada}{Hamilton}{McMaster}
\mtab{}{Saskatoon}{U of S}
\mtab{China}{Beijing}{ITP CAS}
\mtab{}{}{PKU}
\mtab{Czech Republic}{Prague}{CU}
\mtab{}{Rez}{NPI ASCR}
\mtab{Egypt}{Cairo}{EAEA}
\mtab{}{Giza}{CU}
\mtab{France}{Bordeaux}{UB}
\mtab{}{Caen}{GANIL}
\mtab{}{Orsay}{CSNSM}
\mtab{}{}{IPN Orsay}
\mtab{}{Saclay}{IRFU}
\mtab{Germany}{Bonn}{UniBonn}
\mtab{}{Cologne}{Univ.}
\mtab{}{Darmstadt}{GSI}
\mtab{}{}{TU Darmstadt}
\mtab{}{Dresden}{HZDR}
\mtab{}{}{MPI PkS}
\mtab{}{Erlangen}{FAU}
\mtab{}{Frankfurt/Main}{Univ.}
\mtab{}{Hamburg}{Univ.}
\mtab{}{Giessen}{JLU}
\mtab{}{Leipzig}{UoC}
\mtab{}{Mainz}{JGU}
\mtab{}{Munich}{TUM}
\mtab{}{Regensburg}{UR}
\mtab{}{Rostock}{Univ.}
\mtab{}{Siegen}{Univ.}
\mtab{}{Stuttgart}{Univ.}
\mtab{Greece}{Thessaloniki}{AUTH}
\mtab{}{Athens}{INP NCSR "Demokritos"}
\mtab{Hungary}{Budapest}{Wigner RCP}
\mtab{}{Debrecen}{Atomki}
\mtab{Italy}{Bologna}{Centro, ENEA}
\mtab{}{Naples}{INFN}
\mtab{}{Messina}{UniMe}
\mtab{}{Perugia}{INFN}
%\mtab{}{Trento}{UniTr}
\mtab{}{Turin}{UniTo}
\mtab{Japan}{Tokyo}{UT}
\mtab{}{Kobe}{Kobe Univ.}
\mtab{}{Morioka}{Iwate Univ.}
\mtab{}{Osaka}{RCNP}
\mtab{}{}{Osaka Univ.}
\mtab{}{Shizuoka}{SU}
\mtab{Kazakhstan}{Almaty}{INP NNC RK}
\mtab{}{}{KNU}
\mtab{Moldova}{Chisinau}{IAP ASM}
\mtab{Norway}{Bergen}{UiB}
\mtab{}{Oslo}{UiO}
\mtab{Poland}{Krakow}{NINP PAS}
\mtab{}{Otwock-Swierk}{NCBJ}
\mtab{}{Warsaw}{UW}
\mtab{}{}{WUT}
\mtab{Republic\\of Korea}{Seoul}{SNU}
\mtab{Romania}{Bucharest}{IFIN-HH}
\mtab{}{}{UB}
\mtab{Russia}{Moscow}{ITEP}
\mtab{}{}{NNRU "MEPhI"}
\mtab{}{}{MSU}
\mtab{}{}{NRC KI}
\mtab{}{}{SINP MSU}
\mtab{}{Moscow, Troitsk}{INR RAS}
\mtab{}{Gatchina}{PNPI}
\mtab{}{Irkutsk}{ISU}
\mtab{}{Obninsk}{IPPE}
\mtab{}{Omsk}{OmSU}
\mtab{}{Saratov}{SSU}
\mtab{}{St. Petersburg}{SPbSU}
\mtab{}{Vladivostok}{FEFU}
\mtab{Slovak Republic}{Bratislava}{CU}
\mtab{}{}{IP SAS}
\mtab{South Africa}{Pretoria}{Unisa}
\mtab{}{Stellenbosch}{SU}
\mtab{}{Cape Town}{iThemba LABS}
\mtab{Spain}{Palma}{UIB}
\mtab{Sweden}{Lund}{LU}
\mtab{}{Goteborg}{Chalmers}
\mtab{Switzerland}{Bern}{Uni Bern}
\mtab{Taiwan}{Taipei}{NTU}
\mtab{Ukraine}{Kiev}{KINR NASU}
\mtab{}{}{BITP NASU}
\mtab{USA}{Argonne, IL}{ANL}
\mtab{}{Los Alamos, NM}{LANL}
\mtab{}{Notre Dame, IN}{ND}
\mtab{}{University Park, PA}{Penn State}
\mtab{Uzbekistan}{Tashkent}{IAP NUU}
\mtab{}{}{INP UAS}
\mtab{}{}{Assoc."P.-S." PTI}
\end{intcoop}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\TN{01-3-1072-2009/2013}{1}{\tscom}
{Theory of Condensed Matter and New Materials}
{V.A. Osipov\\J. Brankov}
%%\PLDDD{N.M. Plakida}
\TC{Armenia, Australia, Belarus, Belgium, Brazil, Bulgaria, Canada, Czech Republic, France,
Germany, Hungary, India, Ireland, Italy, Moldova, Mongolia, Poland,
Romania, Russia, Serbia, Slovak Republic, Slovenia, Spain, Swit\-zer\-land, Taiwan,
Ukraine, USA, Uzbekistan, Vietnam.}
\TA Multiparticle models of solids taking into consideration strong electron correlations,
electron-lattice, and spin interactions to describe spectra of quasiparticle excitations,
phase transitions and kinetic phenomena in solids. In equilibrium and nonequilibrium
media with strong correlations such as liquids and nuclear matter, the processes of
multifragmentation, clusterization in phase transitions and the influence of surface
effects on properties of clusters. In the theory of superconductivity, nonstandard
mechanisms of pairing in metal-oxides, the problem of bipolaron stability in a polaron
gas environment, the influence of strong electric fields and temperature gradients on
elastic, magnetic, and thermal properties of granular superconductors. For a study of
mechanisms of phase transitions caused by charge, orbital, and magnetic ordering in
magnetic semiconductors and in metals with a large magnetoresistance, experimental data
obtained at the Frank Laboratory of Neutron Physics, JINR, by neutron scattering and the
$\mu$SR method will be used.
Nonlinear problems in multiparticle theory will be studied by using modern methods of the
renormalization group theory, the inverse scattering problem, fractal geometry, and the
conformal field theory. The main subjects of the study are integrable systems,
equilibrium systems of the statistical mechanics, and dissipative systems far from the
thermodynamic equilibrium. The aim of these investigations is to reveal common
properties of the multiparticle systems associated with the ideas of self-similarity and
universality.
The microstructure of amorphous state will be studied in the framework of the
theoretical model where topological disorder is introduced via arrays of
disclination dipoles and loops. The thermal properties of disclinated media
are of primary interest. The electronic spectrum of carbon materials,
fullerenes and nanotubes, will be examined within the field-theory model
adapted to account for nontrivial geometry of these nanostruc\-tures. The model
of random Josephson junction arrays will be studied and applied to describe
high-temperature granular superconductors.
In the theory of finite quantum systems, local and low-dimensional states of matter
obtained in modern experiments will be investigated. In particular, properties of
quasiparticles in mesoscopic systems and the Bose-Einstein condensation in atomic traps
will be studied.
%%\vspace*{4mm}
{\bf Expected main results in 2013:}
\begin{itemize}
%1
\item Calculation of the superconducting transition temperature in the extended Hubbard
model by taking into account the inter-site Coulomb repulsion and electron-phonon interaction.
Study of the magnetic reorientation in sandwich structures of magnetic thin films within
the Green function theory. Description of the process of coherent spin reversal in magnetic
nanomaterials and estimation of the optimal conditions for ultrafast reversal.
Calculation of the orbital excitations in vanadium perovskites and their manifestation in the
resonant inelastic X-ray scattering spectra.
Study of small-angle neutron scattering from multiphase fractal systems.
Proof of instability of Nagaoka state towards the creation of the antiferromagnetic bubble
via a first order phase transition, including a jump in the total spin.
Investigation of the influence of microwave radiation on the current-voltage characteristics
of intrinsic Josephson junctions and temporal oscillations of the electric charge in superconducting layers.
Investigation of electron and heat transport through single and few-layer graphene contacts.
Description of the process of generation of quantum turbulence in bose-condensed systems
of trapped atoms. Proposal of experiments on the detection of granular states in such systems.
%2
\item Evaluation of correlation functions of the Totally Asymmetric Simple Exclusion Process
with the generalized update.
Studies of asymptotic properties of the loop erased random walk.
Ąpplication of the obtained asymptotics to calculation of new characteristics for Rise and Peel
model: the distributions of clusters, length of connection and density of vertices.
Derivation of the exponent characterizing the growth of the number of n-leg watermelons in
the two-dimensional spanning tree.
Finding a new type of boundary conditions for two-dimensional lattice spin systems which
preserve the condition of integrability, and to solving the corresponding Yang-Baxter equation.
Explicit construction of the Cartan calculi on the quantum groups of series SLq(n) and $SU_q(n)$,
and to investigation of their structure theory and applications to integrable systems.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Physical properties of complex\\materials and nanostructures}{N.M. Plakida\\
V.A. Osipov\\ G. Ropke}{\null}
\PL{BLTP}{}{J. Brankov, A.Yu. Cherny, A.V. Chizhov, V. Ilkovich, V.L. Katkov,
O.G. Isaeva, W. Kleinig, E.A. Kochetov, D.V. Kolesnikov, S.E. Krasavin,
A.L. Kuzemsky, V.A. Moskalenko, V.N. Plechko, J. Schmelzer, V.Yu. Yushankhai
+ 3 students}
%2
\item \PS{Mathematical problems\\ of many-particle systems}{V.B. Priezzhev \\V.I. Yukalov}{\null}
\PL{}{}{V.M. Dubovik, V.I. Inozemtsev, T.A. Ivanova,
A.E. Patrik, A.M. Povolotsky, P.N. Pyatov, V.P. Spiridonov, P.E. Zhidkov + 2 students}
\PL{FLNP}{}{V.L. Aksenov, A.M. Balagurov}
\end{stage-t}
\begin{intcoop}
\mtab{Armenia}{Yerevan}{ANL}
\mtab{}{}{YSU}
\mtab{Australia}{Melbourne}{Univ.}
\mtab{}{Sydney}{Univ.}
\mtab{Belarus}{Minsk}{IP NASB}
\mtab{}{}{ICE MES RB}
\mtab{}{}{JIMB NASB}
\mtab{}{}{JIPNR-Sosny NASB}
\mtab{Belgium}{Louvain-la-Neuve}{UCL}
\mtab{Brazil}{Brasilia, DF}{UnB}
\mtab{}{Sao Paulo, SP}{USP}
%\mtab{}{Sao Carlos, SP}{USP}
\mtab{}{Natal, RN}{IIP UFRN}
\mtab{Bulgaria}{Sofia}{IMech BAS}
\mtab{}{}{ISSP BAS}
\mtab{}{}{SU}
\mtab{}{}{INRNE BAS}
\mtab{Canada}{Montreal}{Concordia}
\mtab{}{Quebec}{ULaval}
\mtab{}{Kingston}{Queen's}
\mtab{}{London}{Western}
\mtab{Czech Republic}{\v Re\v z}{NPI ASCR}
\mtab{France}{Paris}{UPMC}
\mtab{}{Marseille}{UPC}
\mtab{}{Nice}{UN}
\mtab{}{Valenciennes}{UVHC}
\mtab{Germany}{Bonn}{UniBonn}
\mtab{}{Bremen}{Univ.}
\mtab{}{Braunschweig}{TU}
\mtab{}{Dortmund}{TU Dortmund}
\mtab{}{Darmstadt}{GSI}
\mtab{}{Dresden}{IFW}
\mtab{}{}{MPI PkS}
\mtab{}{}{TU Dresden}
\mtab{}{Duisburg}{UDE}
%\mtab{}{Potsdam}{AEI}
\mtab{}{Leipzig}{UoC}
\mtab{}{Magdeburg}{OVGU}
\mtab{}{Rostock}{Univ.}
\mtab{}{Stuttgart}{MPI-FKF}
\mtab{}{Wuppertal}{Univ.}
\mtab{Hungary}{Budapest}{Wigner RCP}
\mtab{India}{Mumbai}{TIFR}
\mtab{Ireland}{Dublin}{DIAS}
\mtab{Italy}{Catania}{UniCT}
\mtab{}{Salerno}{UniSa}
\mtab{Poland}{Krakow}{JU}
\mtab{}{Warsaw}{IPCh PAS}
\mtab{}{}{WUT}
\mtab{}{Katowice}{US}
\mtab{}{Poznan}{AMU}
\mtab{}{}{IMP PAS}
\mtab{Romania}{Bucharest}{IFIN-HH}
\mtab{}{Timic soara}{UVT}
\mtab{Russia}{Moscow}{MGTU MIREA}
\mtab{}{}{NNRU "MEPhI"}
\mtab{}{}{MSU}
\mtab{}{}{PFUR}
\mtab{}{}{SINP MSU}
\mtab{}{}{MI RAS}
\mtab{}{}{NRC KI}
\mtab{}{Moscow, Troitsk}{HPPI RAS}
\mtab{}{}{INR RAS}
\mtab{}{Belgorod}{NRU BelSU}
\mtab{}{Dubna}{BMSUT MIREA}
\mtab{}{Gatchina}{PNPI}
\mtab{}{Kazan}{KFU}
\mtab{}{Protvino}{IHEP}
\mtab{}{Saratov}{SSU}
\mtab{}{St. Petersburg}{ETU}
\mtab{}{}{IPTI RAS}
\mtab{}{}{SPbSU}
\mtab{}{Voronezh}{VSU}
\mtab{Moldova}{Chisinau}{IAP ASM}
\mtab{Mongolia}{Ulaanbaatar}{NUM}
\mtab{Serbia}{Belgrade}{INS "VIN\v CA"}
\mtab{Slovak Republic}{Bratislava}{IP SAS}
\mtab{}{Kosice}{IEP SAS}
\mtab{}{}{TUKE}
\mtab{Slovenia}{Ljubljana}{UL}
\mtab{Spain}{Madrid}{ICMM}
\mtab{Switzerland}{Villigen}{PSI}
\mtab{}{Zurich}{ETH}
\mtab{Taiwan}{Taipei}{IP AS}
\mtab{Ukraine}{Kharkov}{KFTI NASU}
\mtab{}{Kiev}{IMP NASU}
\mtab{}{}{NUK}
\mtab{}{L'viv}{ICMP NASU}
\mtab{USA}{Louisville, KY}{UofL}
\mtab{}{New York, NY}{CUNY}
\mtab{}{Rochester, NY}{UR}
\mtab{}{Tallahassee, FL}{FSU}
\mtab{Uzbekistan}{Tashkent}{Assoc."P.-S." PTI}
\mtab{Vietnam}{Hanoi}{IMS VAST}
\end{intcoop}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\TN{01-3-1073-2009/2013}{1}{\tscom}
{Modern Mathematical Physics:\\ Gravity, Supersymmetry, Integrability}
{A.S. Sorin\\A.P. Isaev}
%%\PLDDD{A.T. Filippov}
\TC{Australia, Austria, Armenia, Belarus, Belgium, Brazil, Bulgaria, Canada, CERN,
Czech Republic, France, Germany, Greece, Hungary, ICTP, India, Italy, Japan,
Mexico, Norway, Poland, Romania, Russia, Serbia, Turkey, Ukraine, United Kingdom, USA.}
\TA Superstring Theory is the most serious and worldwide pursued candidate for a
unified theory of all fundamental interactions including Quantum Gravity and
thus it is the principal source of the problems which are the subject of
modern mathematical physics. The development of the theory involves the study
of its surprisingly wide spectrum of possible regimes, vacua and exact
classical and quantum solutions. Furthermore, the theory has applications
in many directions including the nonperturbative regime of supersymmetric
gauge theories, the mechanics and thermodynamics of black holes and
cosmological models of the universe expansion. These are unique laboratories
to check general ideas from unified theories. In particular, in order to
accommodate and develop the new ideas in these sectors inspired by String
Theory, it is crucial to use the powerful mathematical methods provided by the theory
of Integrable Systems, Quantum Groups and Non-Commutative Geometry. The goals
of the present new theme precisely belong to the bridging between these
fields and further development of suitable schemes to be applied in this context.
%%\vspace*{4mm}
{\bf Expected main results in 2013:}
\begin{itemize}
%1
\item Construction of the R-operator which acts in the tensor product of two infinite-dimensional
(differential) representations of the conformal algebra so(p+1,q+1) and solves the Yang-Baxter
equation. The use of this R-operator for formulation of the Integrable spin chains.
Constructive description of pseudotoric structures on toric Fano varieties.
Description of all possible pseudotoric structures on the base of the programme Macauley2.
Description of exotic Lagrangian tori of the Chekanov type on toric Fano varieties.
Studing the serie of Grasmannian varieties Gr(2, n) to establish the existance of pseudotoric structures.
Description of these pseudotoric structures using the programme Macauley2.
%2
\item Construction of off-shell superfield formulations of the Pohlmeyer-reduced $AdS_3xS^3$
and $AdS_5xS^5$ super\-strings in the SU(2|2) 2D superspaces and development of the corresponding
quantization procedure.
Construction and study of new models of N=4 and N=8 mechanics with the semi-dynamical spin variables,
involving couplings to the background non-abelian gauge fields.
Setting up new Landau-type models with extended worldline supersymmetry and finding out their
implica\-tions in the quantum Hall effect, as well as their links with super Yang-Mills and superstring theories.
%3
\item Investigation of the vector fields originated from the dimensional reduction under
generalization of gravita\-tion theory in the Einstein-Eddington line and elucidation of the role
of these fields in cosmology. Search and study of new integrable approximations in spherically
symmetrical cosmologies.
Description of cosmological accelerated expansion in the framework of the modified gravity,
specifically, in the models with terms higher in curvature.
Elaboration of a rigorous method of spectral summation for quantum fields defined on the manifolds
with nontrivial internal geometry and geometry of boundaries with the goal to calculate observed
quantities, for example, vacuum energy.
Classification and construction of the extremal multicenter black hole solutions of the D=4 N=2 supergra\-vities.
\end{itemize}
\begin{stage-t}
%1
\item \PS{Quantum groups\\and integrable systems}{A.P. Isaev}{\null}
\PL{BLTP}{}{S.A. Belev, R.M. Mir-Kasimov, S.Z. Pakulyak, G.S. Pogosyan, N.A. Tyurin
+ 4 students}
%2
\item \PS{Supersymmetry}{E.A. Ivanov}{\null}
\PL{BLTP}{}{D. Cirilo, S.A. Fedoruk, S.O. Krivonos, M. Pientek, A.V Shcherbakov,
A.O. Sutulin, B.M. Zupnik + 2 students}
%3
\item \PS{Quantum gravity,\\cosmology and strings}{A.T. Filippov\\V.V. Nesterenko\\A.S. Sorin}{\null}
\PL{BLTP}{}{B.M. Barbashov, E.A. Davydov, B. Dimitrov, D.V. Fursaev,
A.B. Pestov, I.G. Pirozhenko, A.D. Popov, E.A. Tagirov, P.V. Tretyakov + 3 students}
\PL{LIT}{}{I.L. Bogoliubsky, A.M. Chervyakov}
\PL{VBLHEP}{}{E.E. Donets}
\PL{UC}{}{S.Z. Pakuliak}
\end{stage-t}
\begin{intcoop}
\mtab{Armenia}{Yerevan}{YSU}
\mtab{Austria}{Vienna}{TU Vienna}
\mtab{Australia}{Sydney}{Univ.}
\mtab{Belarus}{Minsk}{IP NASB}
\mtab{}{}{NC PHEP BSU}
\mtab{Belgium}{Leuven}{K.U.Leuven}
\mtab{Brazil}{Sao Paulo, SP}{USP}
\mtab{Bulgaria}{Sofia}{INRNE BAS}
\mtab{}{}{SU}
\mtab{Canada}{Montreal}{McGill}
\mtab{}{}{UdeM}
\mtab{}{Edmonton}{U of A}
\mtab{CERN}{Geneva}{CERN}
\mtab{Czech Republic}{Prague}{CTU}
\mtab{}{}{CU}
%\mtab{}{}{IP ASCR}
\mtab{}{Rez}{NPI ASCR}
\mtab{France}{Annecy-le-Vieux}{LAPP}
\mtab{France}{Annecy-le-Vieux}{LAPTh}
\mtab{}{Dijon}{UB}
\mtab{}{Lyon}{ENS Lyon}
\mtab{}{Marseille}{CPT}
\mtab{}{Nantes}{SUBATECH}
\mtab{}{Paris}{ENS}
\mtab{}{}{LPTHE}
\mtab{}{Palaiseau}{Polytech}
\mtab{}{Valenciennes}{UVHC}
\mtab{Germany}{Berlin}{FU Berlin}
\mtab{}{}{HUB}
\mtab{}{Bielefeld}{Univ.}
\mtab{}{Bonn}{UniBonn}
\mtab{}{Dortmund}{TU Dortmund}
\mtab{}{Hannover}{LUH}
\mtab{}{Jena}{Univ.}
\mtab{}{Leipzig}{UoC}
\mtab{}{Munich}{MPI-P}
\mtab{}{Potsdam}{AEI}
\mtab{Greece}{Athens}{UoA}
\mtab{Hungary}{Budapest}{Wigner RCP}
\mtab{India}{Calcutta}{BNC}
\mtab{ICTP}{Trieste}{ICTP}
\mtab{Italy}{Bari}{INFN}
\mtab{}{Frascati}{INFN LNF}
\mtab{}{Naples}{INFN}
\mtab{}{Padua}{UniPd}
\mtab{}{Pavia}{INFN}
\mtab{}{Pisa}{INFN}
\mtab{}{Salerno}{UniSa}
\mtab{}{Trieste}{SISSA/ISAS}
\mtab{}{Turin}{INFN}
\mtab{Japan}{Fukuoka}{Kyushu Univ.}
\mtab{}{Kyoto}{KSU}
\mtab{}{}{RIMS}
\mtab{}{}{YITP}
\mtab{}{Tsukuba}{KEK}
\mtab{Mexico}{Leon}{UG}
\mtab{Norway}{Trondheim}{NTNU}
\mtab{Poland}{Warsaw}{CAC PAS}
\mtab{}{}{UW}
\mtab{}{Krakow}{JU}
\mtab{}{}{NINP PAS}
\mtab{}{Lodz}{UL}
\mtab{}{Wroclaw}{UW}
\mtab{Romania}{Bucharest}{IFIN-HH}
\mtab{Russia}{Moscow}{ITEP}
\mtab{}{}{LPI RAS}
\mtab{}{}{MSU}
\mtab{}{}{MI RAS}
\mtab{}{}{NRU HSE}
\mtab{}{}{VNIIMS}
\mtab{}{Moscow, Troitsk}{INR RAS}
\mtab{}{Chernogolovka}{LITP RAS}
\mtab{}{Petrozavodsk}{PetrSU}
\mtab{}{Protvino}{IHEP}
\mtab{}{St. Petersburg}{PDMI RAS}
\mtab{}{}{SPbSU}
\mtab{}{Tomsk}{TPU}
\mtab{Serbia}{Belgrade}{IP}
\mtab{}{}{Univ.}
\mtab{Turkey}{Istanbul}{BU}
\mtab{}{Izmir}{IYTE}
\mtab{United Kingdom}{London}{Imperial College}
\mtab{}{Cambridge}{Univ.}
\mtab{}{Durham}{Univ.}
\mtab{}{Liverpool}{Univ.}
\mtab{}{Southampton}{Univ.}
\mtab{}{York}{Univ.}
\mtab{Ukraine}{Kiev}{BITP NASU}
\mtab{}{Kharkov}{KFTI NASU}
\mtab{USA}{New York, NY}{CUNY}
\mtab{}{}{RU}
\mtab{}{}{SUNY}
\mtab{}{Baltimore, MD}{JHU}
\mtab{}{Cincinnati, OH}{UC}
\mtab{}{Clemson, SC}{Clemson}
\mtab{}{College Park, MD}{UM}
\mtab{}{Coral Gables, FL}{UM}
\mtab{}{Minneapolis, MN}{UofM}
\mtab{}{Norman, OK}{UO}
\mtab{}{Philadelphia, PA}{Penn}
\mtab{}{Piscataway, NJ}{Rutgers}
\mtab{}{Rochester, NY}{UR}
\end{intcoop}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\TN{01-3-1074-2009/2013}{1}{\tscom}
{Research and Education Project\\
"Dubna International Advanced School of Theoretical Physics\\(DIAS-TH)"}
{A.S. Sorin\\V.V. Voronov}
\TC{Austria, Brazil, Bulgaria, Canada, CERN, Czech Republic, France, Germany,
Greece, Hungary, India, Italy, Japan, Mexico, Poland, Romania,
Russia, Serbia, Turkey, Ukraine, United Kingdom, USA, Vietnam.}
%\TA
%%\vspace*{.5cm}
The Bogoliubov Laboratory of Theoretical Physics (BLTP) has a good record of organizing
international workshops and schools in Dubna. DIAS-TH organizes and supervises all
educational programs for students, postgraduates, and young scientists at BLTP.
It should function continuously and the standard short schools (about 3-4 a year)
should be organized coherently. Other educational programs in Dubna such as the
JINR University Center may also correlate with DIAS-TH (common programs on modern
theoretical physics, work\-shops for students and young scientists, etc.).\\
%%\vspace*{-.2cm}